Zinc Oxide (ZnO) have the crystal structure of wurtzite which is semiconducting oxide with band gap energy of 3.3eV. $In_2O_3$-doped ZnO films were fabricated by electron beam evaporation at $400^{\circ}C$ and their characteristics were investigated. The content of $In_2O_3$ in ZnO films had a marked effect on the electrical properties of the films. As $In_2O_3$ content decreased. $In_2O_3$-doped ZnO films was converted amorphous into crystallized films and showed a better characteristics generally as a transparent conducting oxide. As $In_2O_3$-doped ZnO films were prepared by $In_2O_3$-doped ZnO pellet with 0.2at% of $In_2O_3$ content, the value of resistivity was about $6.0 {\times} 10^{-3} {\Omega}cm$. The transmittance was higher than 85% throughout the visible range.
Indium doped $SnO_2$ thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the $SnO_2$ were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the $SnO_2$:In by X-ray diffraction showed a (110) dominant $SnO_2$ peak. The size of $SnO_2$ particles ranged from 0.05 to $0.1\;{\mu}m$, and $SnO_2$ particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped $SnO_2$ thick films for gas sensors was about $20\;{\mu}m$, as confirmed by cross sectional SEM image. Sensitivity of the $SnO_2$:In gas sensor to 2000 ppm of $CO_2$ gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to $CO_2$ gas and H2S gas of the indium-doped $SnO_2$ thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped $SnO_2$ gas sensors to $CO_2$ gas were attributed to the increase of oxygen vacancies and surface area in the $SnO_2$:In. The $SnO_2$:In gas sensors showed good selectivity to $CO_2$ gas.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2005.07a
/
pp.207-210
/
2005
In order to investigate the influence of the homo buffer layer on the microstructure of the ZnO thin film, undoped ZnO buffer layer were deposited on sapphire (0001) substrates by ultra high vaccum pulsed laser deposition (UHV-PLD) and molecular beam eiptaxy (MBE). After high temperature annealing at $600^{\circ}C$ for 30min, undoped ZnO buffer layer was deposited with various oxygen pressure (35~350mtorr). On the grown layer of undoped ZnO, Arsenic-doped(l, 3wt%) ZnO layers were deposited by UHV-PLD. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement. From $\Theta-2\Theta$ XRD analysis, all the films showed strong (0002) diffraction peak, and this indicates that the grains grew uniformly with the c-axis perpendicular to the substrate surface. Field emission scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO were varied with oxygen pressure, arsenic doping level, and the deposition method of undoped ZnO buffer layers. The films became denser and smoother in the cases of introducing MBE-buffer layer and lower oxygen pressure during As-doped ZnO deposition. Higher As-doping concentration enhanced the columnar-character of the films.
In order to reduce to the defect density in poly-Si/SiO$_2$ thin films, where poly-Si is either undoped or doped by BF$_2$ implantation, the poly-Si/SiO$_2$ samples have been hydrogenated by rf plasmas of low temperature. Before hydrogenation, both $P_b$ centers and E centers were observed in the poly-Si(undoped)/SiO$_2$ and in the poly-Si(doped)/SiO$_2$. After 30 min hydrogenation, the $P_b$ center was reduced by 80 % doped sample and by 76 % in the undoped sample and the E center was not observed. After 90min hydrogenation, however, increases of the $P_b$ centers and regenerations of the E center were observed in the undoped sample as well as in the doped one. Compared with the undoped sample, the increase of $P_b$ center in the doped one was more dominant.
The design of non-precious electrocatalysts with low-cost, good stability, and an improved oxygen reduction reaction(ORR) to replace the platinium-based electrocatalyst is significant for application of fuel cells and metal-air batteries with high energy density. In this study, we synthesize iron-carbide($Fe_3C$) embedded nitrogen(N) doped carbon nanofiber(CNF) as electrocatalysts for ORRs using electrospinning, precursor deposition, and carbonization. To optimize electrochemical performance, we study the three stages according to different amounts of iron precursor. Among them, $Fe_3C$-embedded N doped CNF-1 exhibits the most improved electrochemical performance with a high onset potential of -0.18 V, a high $E_{1/2}$ of -0.29 V, and a nearly four-electron pathway (n = 3.77). In addition, $Fe_3C$-embedded N doped CNF-1 displays exellent long-term stabillity with the lowest ${\Delta}E_{1/2}=8mV$ compared to the other electrocatalysts. The improved electrochemical properties are attributed to synergestic effect of N-doping and well-dispersed iron carbide embedded in CNF. Consequently, $Fe_3C$-embedded N doped CNF is a promising candidate for non-precious electrocatalysts for high-performance ORRs.
The Tb3+ or Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor were fabricated by funace at 1500 ℃ for 12 h using a solid state reaction. The XRD (X-ray diffraction_Panalytical X'Pert Pro) and FE-SEM (field emission scanning electron microscope) are measured to confirm the crystalline structure and surface morphology of the phosphor. The Tb3+-doped Lu2Gd1Ga2Al3O12 phosphor emits the lights in 470~650 nm wavelength range due to transitions from 5D4 to 7Fj. Therefore, it shows the green region in the CIE chromaticity diagram under both UV and X-rays excitations. The Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor emits the lights in 550~750 nm wavelength range because of 5Di to 7Fj. The emission is confirmed to be in the red region using the CIE chromaticity diagram. The Tb3+ or Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor shows the characteristic f-f transition with a long decay time, which is about several milliseconds. They have the high efficiency of light emission for X-ray because of their high effective Z number (Zeff = 58.5) and density. Therefore, they are very much promising phosphors for X-ray imaging application in medical fields.
The surface of titanium (Ti) dental implants was modified by applying a zinc (Zn)-doped titanium dioxide (TiO2) coating. Initially, the Ti surfaces were etched with NaOH, followed by a hydrolysis co-condensation using tetrabutyl titanate (TBT, Ti(OC4H9)4) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O), with ammonia water (NH3·H2O) acting as a hydroxide anion source. The morphology and chemical composition of the Zn-doped TiO2-coated Ti plates were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM). Synthesis temperatures were carefully adjusted to produce anatase Zn-doped TiO2 nanoparticles with a bipyramidal structure and approximate sizes of 100 nm. Wettability tests and cell viability assays demonstrated the biomedical potential of these modified surfaces, which showed high biocompatibility with a survival rate of over 95 % (p < 0.05) and improved wettability. Corrosion resistance tests using potentiodynamic polarization reveal that Zn-TiO2-treated samples with an anatase crystal structure exhibited a lower corrosion current density and more noble corrosion potential compared to samples coated with a rutile structure. This method offers a scalable approach that could be adapted by the biomaterial industry to improve the functionality and longevity of various biomedical implants.
We investigate the light-emitting performances of blue phosphorescent organic light-emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) (Bphen), 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (Tm3PyPB), and 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of $1,000cd/m^2$ and $10,000cd/m^2$, respectively.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.27
no.1
/
pp.45-49
/
2014
We have fabricated white organic light-emitting diodes (OLEDs) using several thicknesses of electron-transport layer. The multi-emission layer structure doped with red and blue phosphorescent guest emitters was used for achieving white emission. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as an electron-transport layer. The thickness of BCP layer was varied to be 20, 55, and 120 nm. The current efficiency, emission and recombination characteristics of multi-layer white OLEDs were investigated. The BCP layer thickness variation results in the shift of emission spectrum due to the recombination zone shift. As the BCP layer thickness increases, the recombination zone shifts toward the electron-transport layer/emission-layer interface. The white OLED with a 55 nm thick BCP layer exhibited a maximum current efficiency of 40.9 cd/A.
Ga-doped ZnO (GZO) single layer and $SiO_2/GZO$ bi-layered films were deposited on Polycarbonate(PC) substrate by radio frequency magnetron sputtering. Influence of the structural, electrical, and optical properties of the films was considered. We have considered the influence of electron irradiation energy of 450 and 900 eV on the stuctural, electrical and optical properties of $SiO_2/GZO$ thin films. The optical transmittance in a visible wave length region increased with the electron irradiation energy. The electrical resistivity of the films were dependent on the electron's irradiation energy. The $SiO_2/GZO$ films irradiated at 900 eV were showen the lowest resistivity of $7.8{\times}10^{-3}{\Omega}cm$. The film which was irradiated by electron at 900 eV shows 84.3% optical transmittance and also shows lower than contact angle of $58^{\circ}$ in this study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.