• Title/Summary/Keyword: electron microscopic

Search Result 1,229, Processing Time 0.026 seconds

Vasogenic Edema in Experimental Cerebral Fat Embolism

  • Park Byung-Rae;Koo Bong-Oh
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • To evaluate the magnetic resonance imaging and electron microscopic findings of the hyperacute stage of cerebral fat embolism in cats and the time needed for the development of vasogenic edema. Magnetic resonance imaging was performed at 30 minutes (group 1, n=9) and at 30 minutes and 1, 2, 4, and 6 hours after embolization with triolein (group 2, n= 10). As a control for group 2, the same acquisition was obtained after embolization with polyvinyl alcohol particles (group 3, n=5). Electron microscopic examination was done in all cats. In group 1, the lesions were iso- or slightly hyperintense on T2-weighted (T2W) and diffusion-weighted (DWIs) images, hypointense on the apparent diffusion coefficient (ADC) map image, and markedly enhanced on the gadolinium-enhanced T1-weighted images (Gd-T1WIs). In group 2 at 30 minutes, the lesions were similar to those in group 1. Thereafter, the lesions became more hyperintense on T2WIs and DWIs and more hypoinfense on the ADC map image. In group 3, the lesions showed mild hyperintensity on T2WIs at 6 hours but hypointensity on the ADC map image from 30 minutes, with a tendency toward a greater decrease over time. Electron microscopic findings revealed discontinuity of the capillary endothelial wall, perivascular and interstitial edema, and swelling of glial and neuronal cells in groups 1 and 2. The lesions were hyperintense on T2WIs and DWIs, hypointense on the ADC map image, and enhanced on Gd-T1WIs. On electron microscopy, the lesions showed cytotoxic and vasogenic edema with disruption of the blood-brain barrier.

  • PDF

The Physiological and Biochemical Studies of Nocardia sp (Part I) Cell Fine Structure of Nocardia sp (Nocardia sp의 생이생화학적연구 (제1보) Nocardia sp의 미세구조에 관하여)

  • 홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.3
    • /
    • pp.133-140
    • /
    • 1977
  • The results of electron microscopic studies on the cell fine structure of Nocardia sp the location of tellurite-reducing enzyme and the reduction part of T. T. C. (Triphenyl tetrazonium chloride) were summarized as follows. As the fine structure of the cell, the membrane-like structure with unit membrane was distributed in the cytoplasm. The membrane-like structure had complicate forms: some of membrane-like structure appeared spiral form. As the metal tellurium salt appeared in the cytoplasm, it is obvious that tellurite and tellurate-reducing enzymes are present in the cytoplasm. Reduction of T. T. C. took place in the cell membrane and the intracellular membrane-like structure. Therefore, it was thought that reduction of tellurate and T. T. C. took place in different parts. T. T. C. formazane formed in the cell was reoxidized by osmic acid which was used as a fixation reagent for the electron microscopic specimen preparation. As 95% T. T. C. formazane was soluble in ethanol and embedding materials and removed out of the cell, an originally formed formazane appeared as electron light part on the electron microscopic image.

  • PDF