• 제목/요약/키워드: electron donor

검색결과 370건 처리시간 0.031초

Influence of surface morphology and thickness of molecular thin films on the performance of SubPc-$C_{60}$ photovoltaic devices

  • Kim, Jin-Hyun;Gong, Hye-Jin;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2011
  • Over the past decades, organic semiconductors have been investigated intensely for their potential in a wide range of optoelectronic device applications since the organic materials have advantages for very light, flexible and low cost device fabrications. In this study, we fabricated small-molecule organic solar cells (OSCs) based on chloro[subphthalocyaninato]boron(III) (SubPc) as an electron donor and $C_{60}$ as an electron acceptor material. Recently SubPc, a cone-shaped molecule with $14{\pi}$-electrons in its aromatic system, has attracted growing attention in small-molecule OSC applications as an electron-donating material for its greater open-circuit voltage (VOC), extinction coefficient and dielectric constant compared to conventional planar metal phthalocyanines. In spite of the power conversion efficiency (PCE) enhancement of small-molecule OSC using SubPc and $C_{60}$, however, the study on the interface between donor-acceptor heterojunction of this system is limited. In this work, SubPc thin films at various thicknesses were deposited by organic molecular beam deposition (OMBD) and the evolution of surface morphology was observed using atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). We also investigated the influence of film thickness and surface morphology on the PCE of small-molecule OSC devices.

  • PDF

이식을 위한 심장의 장시간 보존에 관한 실험 (Experimental Studies on the Cold Storage of the Rabbit Heart for Transplantation)

  • 노중기;이철세;이길노
    • Journal of Chest Surgery
    • /
    • 제22권6호
    • /
    • pp.887-893
    • /
    • 1989
  • Donor availability is a major limiting factor in heart transplantation. Prolonging donor heart preservation would facilitate distant heart procurement. The setup used was the isolated retrograde perfused nonworking rabbit heart model and 4 hours of preservation at 2oC. And the electron microscopic findings of the myocardium were evaluated after reperfusion for 5 minutes. The following three groups [each group, n=4] were prepared: Group I: the heart was arrested with the St. Thomas Hospital solution [STH] and stored in Ringers lactate solution [RLS]; Group II: the heart was arrested with STH and stored in Modified Collins-Sachs solution [MCS]; Group g: the heart was arrested with and stored in MCS. The result was the most severe myocardial injury in the Group III on electron microscopic study.

  • PDF

지하수내 질산성 질소의 In-situ Bioremediation을 위한 최적 Electron donor 결정에 관한 연구

  • 어성욱;김영;정기섭
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.192-195
    • /
    • 2003
  • As a part of our research project for in-situ bioremediation of nitrate contaminated. groundwater, screening studies to determine an effective electron donor (EO) and/or carbon source (CS) such as acetate, ethanol, formate, fumarate, lactate, and propionate were conducted. To evaluate the feasibility for the biological degradation of nitrate, soil microcosm studies using nitrate-contaminated soil and groundwater were performed. The nitrate removal percentage in the order from the highest to the lowest was: formate, fumarate, and ethanol > lactate > propionate. Essentially no nitrate consumption was observed In acetate-fed microcosms. The order of nitrate removal rate from the highest to lowest was fumarate, formate, lactate, ethanol, and propionate. These results suggest that fumarate and formate are promising EDs/CSs for in-situ bioremediation of nitrate - contaminated oxygenated groundwater.

  • PDF

Molecular Thin Films and Small-molecule Organic Photovoltaics

  • Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.63-63
    • /
    • 2011
  • In this tutorial session, the field of organic photovoltaic (OPV) cells based on small molecular weight materials will be presented. The previously reported studies on the fabrication, structure, and property of the cells as well as the molecular materials are included. Especially, the factors hampering further enhancement in the power conversion efficiency of the cells such as exciton recombination, light absorption and interfacial morphology between electron donor and acceptor layer will be discussed in detail. The recent progress in our group will also be presented. It includes typical materials and cell fabrication techniques we used as well as the studies on improving the light absorption in the electron donor layer and reducing the extinction of excitons formed by introducing the nanostructured interface between organic layers.

  • PDF

각 층에 따른 염료감응형 태양전지의 특성 개선 - II (-특성증진 및 측정기를 중심으로) (An Improvement of the Characteristics of DSSC by Each Layers - II (- Property Improvement and Measuring System))

  • 마재평;박치선
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.65-71
    • /
    • 2011
  • Properties of each layer in DSSC were investigated to improve solar cell characterstics. Also in this study, low costsolar simulator system is fabricated and used. Efficiency of DSSC is better in the case of thinner semiconductive layer, because thick semiconductive layer is acted as resistor. Sc-doped ZnO thin films showed better electrical property by proper donor doping effect. Among the dyes, DSSC containing N719 showed higher efficiency, because N719 have smaller electron affinity and shallow band gap.

산소 플라즈마 처리 후 ZnO 박막에 대한 PL 연구 (PL Study on the Oxygen-Plasma-Treated ZnO Thin Film)

  • 조재원;이석주
    • 한국전기전자재료학회논문지
    • /
    • 제24권12호
    • /
    • pp.992-995
    • /
    • 2011
  • The optical properties of ZnO thin film, being treated by O-plasma, have been studied using Photoluminescence(PL) spectroscopy with the change of temperature from 10 K to 290 K. Two characteristic peaks were identified at 10 K : 3.357 eV($D^{\circ}X$) and 3.324 eV(TES). The peak of $D^{\circ}X$ is believed to be due to neutral donor bound excitons where the donor is in the ground state. However, the TES(Two Electron Satellite) peak indicates the excited state of the donor(excitation energy was ~30 meV). The donor binding energy was estimated to be 44 meV, which indicates the possible presence of the neutral donor bound excitons at RT. The thermal effect including thermal broadening was identified from temperature evolution of the spectrum. Both the peak intensity and the peak energy have decreased as the temperature increases. As the temperature approaches to RT, the two peak merges into one broad peak, which is considered a combination of multiple peaks having different physical origins.

Time-Dependent Density Functional Theory Study on Cyclopentadithiophene-Benzothiadiazole-Based Push-Pull-Type Copolymers for New Design of Donor Materials in Bulk Heterojunction Organic Solar Cells

  • Ku, Ja-Min;Kim, Dae-Kyun;Ryu, Taek-Hee;Jung, Eun-Hwan;Lansac, Yves;Jang, Yun-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.1029-1036
    • /
    • 2012
  • Push-pull-type copolymers - low-band-gap copolymers of electron-rich fused-ring units (such as cyclopentadithiophene; CPDT) and electron-deficient units (such as benzothiadiazole; BT) - are promising donor materials for organic solar cells. Following a design principles proposed in our previous study, we investigate the electronic structure of a series of new CPDTBT derivatives with various electron-withdrawing groups using the time-dependent density functional theory and predict their power conversion efficiency from a newlydeveloped protocol using the Scharber diagram. Significantly improved efficiencies are expected for derivatives with carbonyl [C=O], carbonothioyl [C=S], dicyano [$C(CN)_2$] and dicyanomethylene [C=$C(CN)_2$] groups, but these polymers with no long alkyl side chain attached to them are likely to be insoluble in most organic solvents and inapplicable to low-cost solution processes. We thus devise several approaches to attach alkyl side chains to these polymers while keeping their high efficiencies.

Cross Conjugated Chromophores Based On Indigo Typed

  • 박수열;전근;신종일;신승림;오세화
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2004년도 추계학술발표회 논문집
    • /
    • pp.274-275
    • /
    • 2004
  • The majority of dyes belong to the chromophoric class known as donor-acceptor systems, the essential structural feature of such systems being the presence of one or more electron donating groups conjugated to one or more electron withdrawing groups via an unsaturated bridge. The indigo molecule may be formally divided into two identical electron donor/acceptor subsystems, each containing an add number of pi electrons, two subsystems being joined by carbon-carbon double bond. Indigoid type dyes which show a strong colour change on protonation or dissociation have many potential functional applications, for example as analytical pH indicators, solvent polarity indicators, and in various imaging and reprographic systems.

  • PDF