• Title/Summary/Keyword: electron donor

Search Result 370, Processing Time 0.025 seconds

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

Vapor Phase Epitaxial Growth and Properties of GaN (GaN의 기상성장과 특성)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.72-75
    • /
    • 1996
  • A hydride vapor phase epitaxy (HVPE) method is performed to prepare the GaN thin films on c-plane sapphire substrate. The full-width at half maximum of double crystal X-ray rocking curves from 20$\mu\textrm{m}$-thick GaN was 576 arcsecond. The photoluminescence spectrum measured 10 K shows the hallow bound exciton (I$_2$) line and weak donor-acceptor peak, however, there was not observed deep donor-acceptor pair recombination indicate the GaN crystals prepared in this study are of high purity and high crystalline quality. The GaN layer is n-type conducting with electron mobility of 72 $\textrm{cm}^2$/V$.$sec and with carrier concentration of 6 x 10$\^$18/cm/sup-3/.

  • PDF

Synthesis and Characterization of 1,2,4-Oxadiazole-Based Deep-Blue and Blue Color Emitting Polymers

  • Agneeswari, Rajalingam;Tamilavan, Vellaiappillai;Hyun, Myung Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.513-517
    • /
    • 2014
  • Two donor-acceptor-donor monomers such as 3,5-bis(4-bromophenyl)-1,2,4-oxadiazole (BOB) and 3,5-bis(5-bromothiophen-2-yl)-1,2,4-oxadiazole (TOT) incorporating electron transporting and hole blocking 1,2,4-oxadiazloe moiety were copolymerized with light emitting fluorene derivative via Suzuki polycondensation to afford two new polymers, PFBOB and PFTOT, respectively. The optical studies for polymers PFBOB and PFTOT revealed that the band gaps are 3.10 eV and 2.72 eV, respectively, and polymer PFBOB exhibited a deep-blue emission while polymer PFTOT showed blue emission in chloroform and as thin film. The photoluminescence quantum efficiencies (${\Phi}_f$) of polymers PFBOB and PFTOT in chloroform calculated against highly blue emitting 9,10-diphenylanthracene (DPA, ${\Phi}_f=0.90$) were 1.00 and 0.44, respectively.

Relationships between the Raman Excitation Photon Energies and Its Wavenumbers in Doped trans-Polyacetylene

  • Kim, Jin-Yeol;Kim, Eung-Ryul;Ihm, Dae-Woo;Tasumi, Mitsuo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1404-1408
    • /
    • 2002
  • The resonance Raman spectra of trans-polyacetylene films doped heavily with electron donor (Na) and acceptor (HClO4) have been measured with excitation wavelengths between 488- and 1320-nm, and the relationships between the Raman excitation photon energies (2.54-0.94 eV) and its wavenumbers were discussed. We found the linear dependence of the Raman shifts with the exchanges of excitation photon energies. In particular, the Raman wavenumbers in the C=C stretching $(V_1$ band) showed a dramatic decrease with the increase in Raman excitation photon energies. In the case of acceptor doping, its change is larger than that of donor doping. The observed wavenumber (1255-1267 $cm^{-1}$) of the $V_2$ band (CC stretch) of Na-doped form is lower than that of the corresponding band (1290-1292 $cm^{-1}$) of its pristine trans-polyacetylene, whereas the contrary is the case for the HClO4 doped form (1295-1300 $cm^{-1}$). The origin of doping-induced Raman bands is discussed in terms of negative and positive polarons.

Optimization of energy level alignment for efficient organic photovoltaics (에너지 준위 접합 최적화를 통한 유기태양전지 효율 향상법)

  • Lee, Hyunbok
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.12-16
    • /
    • 2015
  • Organic photovoltaics (OPVs) have attracted significant interest in an interdisciplinary research field for the decades as a next-generation photovoltaic device due to their unique advantages. One of requirements for OPVs having high power conversion efficiency is the favorable energy level alignment between the electrode/organic and organic/organic interfaces to manage the exciton dissociation and improve the charge transport. In this review, strategies to enhance the OPV performance by controlling the energy level alignment are discussed. The insertion of an exciton blocking layer leads to the efficient dissociation of photogenerated excitons at the donor/acceptor interface enhancing the short-circuit current density. The choice of a donor having a high ionization energy and an acceptor having a low electron affinity increases the open-circuit voltage. The insertion of an appropriate work function modifier which reduces the charge injection barrier removes the S-kink in current density-voltage characteristics of OPVs and improves the fill factor. This review would give a valuable guide to design the efficient OPV structure.

Growth Properties of the Iron-reducing Bacteria, Shewanella putrefaciens IR-1 and MR-1 Coupling to Reduction of Fe(III) to Fe(II)

  • Park, Doo-Hyun;Kim, Byung-Hong
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.273-278
    • /
    • 2001
  • Shewanela, putrefaciene IR-1 and MR-1 were cultivated by using various combinations electron donor-acceptor, lactate-Fe(III) lactate-nitrate, pyruvate-FE(III), pyruvate-nitrate H$_2$ acetate-Fe(III) and H$_2$-acetate-nitrate. Both strains grew fermentatively on pyruvate and lactate but not on without and electron acceptor. In culture with Fe(III), both astrains grew on pyruvate and lactate but on H$_2$-acetate- CO$_2$. In cultivation with nitrate, both stains grew on pyruvate lactage and on H$_2$-acetate-CO$_2$ The growth yields of IR-1 pyruvate, pyruvate-Fe(III) and lactate-Fe(III) were about 3.4, 3.5, and 3.6(g cell/M substrate), respectively. From the growth properties of both strains on media with Fe(III) as an electron acceptor, the bacterial growth was confirmed not to be increased by addition of Fee(III) as an electron acceptor to the growth medium, which indicates a possibility that the dissimilatory reduction of Fe(III) to Fe(III) may not be coupled to free energy production.

  • PDF

Spectrophotometric Determination of Antihistaminics by using Iodine as Electron Acceptor (요오드를 전자수용체로 한 항히스타민제의 분광학적 분석)

  • Moon, Hong-Seob;Baik, Chai-Sun
    • YAKHAK HOEJI
    • /
    • v.33 no.3
    • /
    • pp.141-148
    • /
    • 1989
  • The weak UV absorbing antihistaminics such as chlorpheniramine, triprolidine, tripelennamine and diphenhydramine were analyzed by charge-transfer spectrophotometric method. The results obtained are summarized as folows. It was possible to determine a weak UV absorbing antihistaminics using the intense charge-transfer UV bands in chloroform. Charge transfer complexes were formed in a 1:1 ratio between antihistaminics and iodine in chloroform. Linear relationship was found between absorbance and concentration in the range of $1.0\;{\times}\;10^{-5}M-5.0\;{\times}\;10^{-5}M$ for chlorpheniramine( ${\varepsilon}\;=\;2.082\;{\times}\;10^4$) and tripelennamine ( ${\varepsilon}\;=\;1.578\;{\times}\;10^4$), $1.0\;{\times}\;10^{-5}M-8.0\;{\times}\;10^{-5}M$ for triprolidine ( ${\varepsilon}\;=\;1.120\;{\times}\;10^4$) and $1.0\;{\times}\;10^{-5}M-1.0\;{\times}\;10^{-4}M$ for diphenhydramine ( ${\varepsilon}\;=\;9.900\;{\times}\;10^3$). Charge transfer complexes of chlorpheniramine, triprolidine and tripelennamine have absorption maxima at 293 nm and complex form of diphenhydramine has absorption maximum at 270 nm. By UV, IR spectra, it could be inferred that CT-complexes were formed by interaction between the basic nitrogen of antihistaminics as electron donor (non bonding electron) and iodine as electron acceptor (${\sigma}$ bonding electron).

  • PDF

Performance Comparison of CuPc, Tetracene, Pentacene-based Photovoltaic Cells with PIN Structures

  • Hwang, Jong-Won;Kang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyun;Jo, Young-Ran;Choe, Young-Son
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.311-312
    • /
    • 2010
  • The fabricated photovoltaic cells based on PIN heterojunctions, in this study, have a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)/donor/donor:C60(10nm)/C60(35nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline(8nm)/Al(100nm). The thicknesses of an active layer(donor:C60), an electron transport layer(C60), and hole/exciton blocking layer(BCP) were fixed in the organic photovoltaic cells. We investigated the performance characteristics of the PIN organic photovoltaic cells with copper phthalocyanine(CuPc), tetracene and pentacene as a hole transport layer. Discussion on the photovoltaic cells with CuPc, tetracene and pentacene as a hole transport layer is focussed on the dependency of the power conversion efficiency on the deposition rate and thickness of hole transport layer. The device performance characteristics are elucidated from open-circuit-voltage(Voc), short-circuit-current(Jsc), fill factor(FF), and power conversion efficiency($\eta$). As the deposition rate of donor is reduced, the power conversion efficiency is enhanced by increased short-circuit-current(Jsc). The CuPc-based PIN photovoltaic cell has the limited dependency of power conversion efficiency on the thickness of hole transport layer because of relatively short exciton diffusion length. The photovoltaic cell using tetracene as a hole transport layer, which has relatively long diffusion length, has low efficiency. The maximum power conversion efficiencies of CuPc, tetracene, and pentacene-based photovoltaic cells with optimized deposition rate and thickness of hole transport layer have been achieved to 1.63%, 1.33% and 2.15%, respectively. The photovoltaic cell using pentacene as a hole transport layer showed the highest efficiency because of dramatically enhanced Jsc due to long diffusion length and strong thickness dependence.

  • PDF

Donor-π-Acceptor Type Diphenylaminothiophenyl Anthracene-mediated Organic Photosensitizers for Dye-sensitized Solar Cells

  • Heo, Dong Uk;Kim, Sun Jae;Yoo, Beom Jin;Kim, Boeun;Ko, Min Jae;Cho, Min Ju;Choi, Dong Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1081-1088
    • /
    • 2013
  • Two new metal-free organic dyes bridged by anthracene-mediated ${\pi}$-conjugated moieties were successfully synthesized for use in a dye-sensitized solar cell (DSSC). A N,N-diphenylthiophen-2-amine unit in these dyes acts as an electron donor, while a (E)-2-cyano-3-(thiophen-2-yl)acrylic acid group acts as an electron acceptor and an anchoring group to the $TiO_2$ electrode. The photovoltaic properties of (E)-2-cyano-3-(5-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)thiophen-2-yl)acrylic acid (DPATAT) and (E)-2-cyano-3-(5'-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)-2,2'-bithiophen-5-yl)acrylic acid (DPATABT) were investigated to identify the effect of conjugation length between electron donor and acceptor on the DSSC performance. By introducing an anthracene moiety into the dye structure, together with a triple bond and thiophene moieties for fine-tuning of molecular configurations and for broadening the absorption spectra, the short-circuit photocurrent densities ($J_{sc}$), and open-circuit photovoltages ($V_{oc}$) of DSSCs were improved. The improvement of $J_{sc}$ in DSSC made of DPATABT might be attributed to much broader absorption spectrum and higher molecular extinction coefficient (${\varepsilon}$) in the visible wavelength range. The DPATABT-based DSSC showed the highest power conversion efficiency (PCE) of 3.34% (${\eta}_{max}$ = 3.70%) under AM 1.5 illumination ($100mWcm^{-2}$) in a photoactive area of $0.41cm^2$, with the $J_{sc}$ of $7.89mAcm^{-2}$, the $V_{oc}$ of 0.59 V, and the fill factor (FF) of 72%. In brief, the solar cell performance with DPATABT was found to be better than that of DPATAT-based DSSC.

Quantum Yield of Photoinduced Electron Transfer Across Microemulsion Interfaces (마이크로 에멀젼 계면을 통과하는 광유발전자의 양자수득률)

  • Yong-Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.213-217
    • /
    • 1983
  • Devices that mimic the natural photosynthetic pathway are of considerable interest as fuel sources. Quantum yield of viologen radical formation in several water-in-oil microemulsion system were measured. The yield of hexadecylviologen radical formation in microemulsion system using EDTA as an electron donor, ruthenium bipyridinium complex as photosensitizer, and hexadecylviologen as an electron acceptor was 12%. When benzylnicotinamide was inserted in the interface of the microemulsion and azo compound was dissolved in oil face, the quantum yield of hydroazo compound was 0.16. Organic dye (Rose bengal) was used as photosensitizer for the photoinduced electron transfer reaction. In anionic microemulsion no electrontransfer was observed.

  • PDF