• Title/Summary/Keyword: electron collision cross sections set for CF$_4$ gas

Search Result 4, Processing Time 0.019 seconds

The analysis of electron transport coefficients in $CF_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 $CF_4$ 분자가스의 전자수송계수 해석)

  • Jeon, Byung-Hoon;Park, Jae-June;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method. we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure $CF_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method. we confirmed erroneous calculated results of transport coefficients for $CF_{4}$ molecule treated in this paper having 'C2v symmetry' as $C_{3}H_{8}$ and $C_{3}F_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and $ND_L$) in pure $CF_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at lames-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.

  • PDF

The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF

Analysis of Electron Swarm Diffusion Coefficients and Energy Distribution Function in $e^-$-$CF_4$ Scattering ($e^-$-$CF_4$산란중에서 전자군의 확산계수 및 에너지분포함수 연구)

  • 하성철;임상원
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.342-348
    • /
    • 1997
  • In this paper, the behavior of electron swarm parameters and energy distribution function of the discharge under high E/N condition in e$^{-10}$ -CF$_{4}$ gas have been analysed over the E/N range from 1-300(Td) by the MCS and BEq methods using set of electron collision cross section determined by the authors. The swarm parameters and energy distribution function have been calculated for the pulsed Townsend, steady-state Townsend and Time of Flight methods. The results gained that the value of electron swarm parameters such as the electron drift velocity, the electron ionization and attachment coefficients and longitudinal diffusion coefficients in agreement with the experimental and theoretical data for a range of E/N. The electron energy distribution function has been explained and analysed in e$^{-10}$ -CF$_{4}$ at E/N : 5, 10, 100, 200, 300(Td) for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The validity of the results has been confirmed by TOF and SST methods.

  • PDF

An Application of Two-term and Multi-term Approximation of Boltzmann Equation to Electron Swarm Method (전자군 방법에 이용되는 2항근사와 다항근사 볼츠만 방정식의 적용)

  • 하성철;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.79-84
    • /
    • 2002
  • An accurate cross sections set is necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. It is general calculation that used in this method to an two-term approximation of Boltzmann equation. But it may give erroneous transport coefficients for CF$_4$ molecule treated in this paper having \`C2v symmetry\`, therefore, multi-term approximation of the Boltzmann equation analysis which can consider anisotropic scattering exactly is carried out. It is necessary to require understanding of the fundamental principle of analysis method. Therefore, in this paper, we compared the electron transport coefficients(W and ND$\_$L/) in pure Ar, O$_2$, and CF$_4$ gas calculated by using two-term approximation of the Boltzmann equation analysis code uses the algorithm proposed by Tagashira et al. with those by multi-term approximation by Rubson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing these calculated results.