• Title/Summary/Keyword: electron acceptors

Search Result 89, Processing Time 0.037 seconds

The Fate of As and Heavy Metals in the Flooded Paddy Soil Stabilized by Limestone and Steelmaking Slag (석회석과 제강슬래그를 이용하여 안정화한 담수된 논토양의 비소 및 중금속의 거동변화)

  • Koh, Il-Ha;Kim, Eui-Young;Ji, Won Hyun;Yoon, Dae-Geun;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.7-18
    • /
    • 2015
  • The characteristics of As and heavy metals depend on the oxidation/reduction condition of the soil environment. The most heavy metals are immobilized by the reduction condition whereas As, Fe and Mn become more soluble. Therefore this study estimated the stabilization efficiency of the agricultural paddy soil in the vicinity of the abandoned mine using a flooded column test including analysis of the soil solution, contaminants fractionation and rice grain. Limestone and steelmaking slag were used as amendments for stabilization of the contaminated soil. In an analysis of the soil solution, the mobile characteristics of Fe and Mn, which were used as electron acceptors of the microorganisms, were controlled by increasing the pH by adding alkali amendments. This means that the contaminants combined with Fe and Mn can be stable under flooded reduction condition. However, the concentrations of cationic heavy metals (Cd, Pb, and Zn) were also decreased without amendments because the carbonates produced from microbial respiration increased the pH of the soil solution. In the amended soil, the specific sorbed fraction of As and carbonates fraction of heavy metals were increased when compared to the control soil at the end of the column test. Especially in heavy metals, the increase of carbonates fraction seems to be influenced by alkali amendments rather than microbial respiration. Because of the stabilization effect in the flooded paddy soil, the contents of As and Zn in rice grain from amended soil were lower than that of the control soil. But additional research is needed because of the relatively higher Pb content identified in the rice grain from the amended.

Efficient Expression, Purification, and Characterization of a Novel FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus in Pichia pastoris

  • Yang, Yufeng;Huang, Lei;Wang, Jufang;Wang, Xiaoning;Xu, Zhinan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1516-1524
    • /
    • 2014
  • Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) can utilize a variety of external electron acceptors and also has stricter substrate specificity than any other glucose oxidoreductases, which makes it the ideal diagnostic enzyme in the field of glucose biosensors. A gene coding for a hypothetical protein, similar to glucose oxidase and derived from Aspergillus terreus NIH2624, was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 260,000 U/l in the culture supernatant after fed-batch cultivation for 84 h. After a three-step purification protocol that included isopropanol precipitation, affinity chromatography, and a second isopropanol precipitation, recombinant FAD-GDH was purified with a recovery of 65%. This is the first time that isopropanol precipitation has been used to concentrate a fermentation supernatant and exchange buffers after affinity chromatography purification. The purified FAD-GDH exhibited a broad and diffuse band between 83 and 150 kDa. The recombinant FAD-GDH was stable across a wide pH range (3.5 to 9.0) with maximum activity at pH 7.5 and $55^{\circ}C$. In addition, it displayed very high thermal stability, with a half-life of 82 min at $60^{\circ}C$. These characteristics indicate that FAD-GDH will be useful in the field of glucose biosensors.

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Effects of Glucose on the Products of Progesterone Transformation by Rhizopus nigricans (Rhizopus nigricans의 Progesterone전환 반응 산물에 관한 포도당의 효과)

  • 김명희;김종혜;김말남
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.258-262
    • /
    • 1991
  • Rate of 11.alpha.-hydroxylation of progesterone with Rhizopus nigricans was accelerated by glucose. Glucose seemed to play an important role in the formation of cofactor because its effects on the reaction were almost same as those of electron acceptors such as NADPH and $NaIO_{4}$. Rate of glucose consumption appeared to increase in proportion as the rate of hydroxylation reaction, which enhanced with increase in the glucose concentration to level off at 0.5 g/l for mycelia and at 20 g/l for spores. However, for mycelia immobilized in polyacrylamide gel, externally added glucose did not affect the reaction rate at all because of the glucose accumulated in the gel during the cultivation period. 5.alpha.-Reduction of 11.alpha.-hydroxyprogesternoe required much higher concentration of glucose than 11.alpha.-hydroxylation of progesternoe so that high yield of 11.alpha.-hydroxyprogesternoe can be obtained by repressing the activity of 5.alpha.-reductase at low concentration of glucose.

  • PDF

Degradation of Tetrachloroethylene (PCE) by a Dechlorinating Enrichment Culture Fixed in an Anaerobic Reactor (탈염소화 미생물 부착 혐기성 고정막 반응기에 의한 테트라클로로에틸렌(PCE)의 분해)

  • Lee Tae Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.49-55
    • /
    • 2004
  • A soil enrichment LYF-1 culture from a contaminated site, which could reductively dechlorinate 900 $\mu$M (ca. 150 mg/L) of tetrachloroethylene (PCE) stoichimetrically into cis-1,2-dichloroethylene (cis-DCE), was established and characterized. The enrichment culture can use yeast extract, peptone, formate, acetate, lactate, pyruvate, citrate, succinate, glucose, sucrose, and ethanol as electron donors for dechlorination of PCE. Addition of NO$_2$$^{[-10]}$ and NO$_3$$^{[-10]}$ as alternative electron acceptors showed complete inhibition of PCE dechlorination, but S$_2$O$_3$$^{-2}$ , SO$_3$$^{-2}$ and SO$_4$$^{-2}$ had no significant effect on PCE dechlorination. The enrichment culture was attached to ceramic media in an anaerobic fixed-bed reactor. The fixed-bed reactor showed more than 99% of PCE degradation in the range of PCE loading rate of 0.13-0.78 $\mu$moles/L/hr. The major end product of PCE dechlorination was cis-DCE.

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

The Thermodynamics of the Formation of Pyridine-Halogen and Interhalogens Charge Transfer Complexes (피리딘과 할로겐 또는 할로겐간 화합물 사이의 전하이동 착물생성에 관한 열역학적 연구)

  • Oh Cheun Kwun;Jin Burm Kyong;Kee Joon Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.363-368
    • /
    • 1982
  • Ultraviolet spectrophotometric investigations were carried out on the systems of pyridine with iodine, iodine monobromide and iodine monochloride in carbon tetrachloride. The results reveal the formation of the one to one molecular complexes of the type, $C_5H_5N{\cdot}I_2$, $ C_5H_5$N{\cdot}IBr and $ C_5H_5N{\cdot}ICl$. Considering ${\lambda}_max$ according to the formation of charge transfer complexes has the blue shift with the increasing temperatures$25, 40, 60^{\circ}C$ the equilibrium constants K and molar absorptivities $\varepsilon$ of complexes were obtained. From these values, the thermodynamic parameters ${\Delta}H$, ${\Delta}G$ and ${\Delta}S$ for the formation of the above charge transfer complexes were obtained. These results indicate that the relative stabilities of iodine, iodine monobromide and iodine monochloride complexes with pyridine increase in the order, $ C_5H_5N{\cdot}I_2$ < $ C_5H_5N{\cdot}IBr$ <$ C_5H_5N{\cdot}ICl$. This may be a measure of relative acidity of halogen and interhalogen toward pyridine and can be explained by the polarizabilities of electron acceptors and the difference of electronegativities of halogen atoms.

  • PDF

Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides (식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발)

  • Park, Do-Hyun;Wang, Soo-Kyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.53-64
    • /
    • 2009
  • Wetlands can remove organic contaminants, metals and radionuclides from wastewater through various biogeochemical mechanisms. In this study, a mathematical model was developed for simulating the fate and transport of chemical species in marsh wetland sediments. The proposed model is a one-dimensional vertical saturated model which is incorporated advection, hydrodynamic dispersion, biodegradation, oxidative/reductive chemical reactions and the effects from external environments such as the growth of plants and the fluctuation of water level due to periodic tides. The tidal effects causes periodic changes of porewater flow in the sediments and the evapotranspiration and oxygen supply by plant roots affect the porewater flow and redox condition on in the rhizosphere along with seasonal variation. A series of numerical experiments under hypothetical conditions were performed for simulating the temporal and spatial distribution of chemical species of interests using the proposed model. The fate and transport of a trace metal pollutant, chromium, in marsh sediments were also simulated. Results of numerical simulations show that plant roots and tides significantly affect the chemical profiles of different electron acceptors, their reduced species and trace metals in marsh sediments.

Rates and Pathways of Anaerobic Mineralization of Organic Matter at Highly Stagnant Freshwater Wetland and Its Comparison to Frequently Flushed Coastal Wetland (정체된 시화 인공습지와 해수유통이 활발한 강화 갯벌에서의 혐기성 유기물 분해능 및 분해경로 비교)

  • Kim, Sung-Han;Mok, Jin Sook;Jeong, Jeong Ho;Chang, Yoon Young;Choi, Kwang Soon;Hyun, Jung-Ho
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • The objectives of this study are: (1) to compare the rates and pathways of organic matter minerlaization at stagnant freshwater wetland in Shiwha to highly irrigated coastal wetland in Ganghwa; and (2) to discuss the significance of irrigation into the sediment in controlling the organic carbon oxidation in Shiwha wetland. Concentrations of $CO_2$, $NH_4{^+}$ and $H_2S$ in the pore water of the Shiwha wetland were 3 times, 30 times, and 3 times higher than that in the pore water of the Ganghwa wetland, respectively. The ratio of Fe(III) to total reduced sulfur at the Ganghwa wetland was 12 times higher than at the Shiwha wetland. The results indicated that the Ganghwa wetland with frequent tidal inundation were relatively oxidized than highly stagnant Shiwha wetland. Rates of organic matter oxidation at the Ganghwa wetland ($0.039mM\;C\;h{-1}$) was 390 times higher than that at the Shiwha wetland ($0.0001mM\;C\;h{-1}$). Rates of sulfate reduction at the Shiwha wetland ($314{\sim}580nmol\;cm^{-3}\;d{-1}$) were comparable to the sulfate reduction at Ganghwa wetland ($2{\sim}769nmol\;cm^{-3}\; d{-1}$), whereas Fe(III) reduction rates were 1.7 times higher at the Ganghwa wetland ($0.1368{\mu}mol\;cm^{-3}\;d{-1}$) than at the Shiwha wetland ($0.087{\mu}mol\;cm^{-3}\;d{-1}$). The results implied that the water flow system of the Shiwha wetland was too stagnant to flush out the reduced pore water from the sediment, and thus anaerobic microbial respiration was limited by the availability of electron acceptors.

  • PDF