• Title/Summary/Keyword: electromagnetic wave shielding

Search Result 107, Processing Time 0.023 seconds

Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic

  • Kim, Hong Gun;Shin, Hee Jae;Kim, Gwang-Cheol;Park, Hyung Joon;Moon, Ho Joon;Kwac, Lee Ku
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.268-276
    • /
    • 2014
  • Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of $0^{\circ}$, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and $90^{\circ}$, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was $90^{\circ}$, which was perpendicular to the electromagnetic wave flow, as compared to $0^{\circ}$, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.

A Conductive-grid based EMI Shielding Composite Film with a High Heat Dissipation Characteristic (전도성 그리드를 활용한 전자파 흡수차폐/방열 복합소재 필름)

  • Park, Byeongjin;Ryu, Seung Han;Kwon, Suk Jin;Kim, Suryeon;Lee, Sang Bok
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.175-181
    • /
    • 2022
  • Due to the increasing number of wireless communication devices in mmWave frequency bands, there is a high demand for electromagnetic interference (EMI) shielding and heat dissipating materials to avoid device malfunctions. This paper proposes an EMI shielding composite film with a high heat dissipation characteristic. To achieve this, a conductive grid is integrated with a polymer-based composite layer including magnetic and heat dissipating filler materials. A high shielding effectiveness (>40 dB), low reflection shielding effectiveness (<3 dB), high thermal conductivity (>10 W/m·K), thin thickness (<500 ㎛) are simultaneously achieved with a tailored design of composite layer compositions and grid geometries in 5G communication band of 26.5 GHz.

The Study on a Fixing-clip of a Shield Can Shielding Electromagnetic wave (전자파 차단을 위한 �Q드캔용 고정 클립 개발에 관한 연구)

  • Park, Tai-Heoun;Park, Man-Gyu;Park, Sang-Heup;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.554-560
    • /
    • 2013
  • This study proposes an structure that fixes the shielding device to two parts of the board by its two arranged clips. Said structure evenly distributes its loading/unloading load of the board and maintains the flatness of soldering area of the board. The structure of this study comprises a base part fixed to a printed circuit board and a clip part fixing a side wall of a shield can to the board, wherein the clip part is constituted with two clips fixable to two part of the shield can. Also, the structure of this study comprises a dented groove in order to easily solder the base part of clips and the printed circuit board. A mechanism is established and a design parameter was determined by a structure analysis and a vibration mode analysis. A single purpose machine for the production of the product was developed, the final workpiece was produced and the measuring-data and the computered-data was compared and reviewed.

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF

Dielectric Characteristics of the Polymers Containing Nano-size Conductive Carbon Black Powders (전도성 나노 카본 블랙을 함유한 고분자 재료의 유전특성)

  • 진우석;이대길
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.68-77
    • /
    • 2004
  • The electromagnetic (EM) absorption or shielding characteristics of a material is an important issue not only for military purpose but also for commercial purposes such as radar, electric or telecommunication devices. In order to design the effective electromagnetic wave absorber, the electromagnetic characteristics of the constituents of the material should be available in target frequency band. Also, it must be possible to predict the electromagnetic properties of absorbers with respect to the content of lossy ingredients. In this study, the dielectric properties of unsaturated polyester resins containing nano-size conductive carbon black powder were measured with a free space method in the X-band frequency range and analyzed with respect to the content of carbon black. Finally, the method for estimating the dielectric properties of polymeric resin containing conductive carbon black with respect to the EM frequency was developed and verified.

Design of a Planar Log-Spiral Antenna for Testing Plane-Wave Shielding Effectiveness (평면파 차폐효과 시험용 평판형 로그 스파이럴 안테나 설계)

  • Chung, Yeon-Choon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.762-767
    • /
    • 2019
  • The plane-wave shielding effectiveness is typically measured for horizontal and vertical polarizations using a linearly polarized antenna. However, this typical measurement method results in big evaluation fees due to very long measurement time as well as huge idle space for maintenance, these problems is more severe especially in large shielded enclosures such as EMP protection facilities to be built in indoor buildings and underground. This paper describes the design and fabrication process and results of a planar log-spiral antenna applicable to the evaluation of the electromagnetic shielding effectiveness of a large EMP protection facility. Since the proposed antenna has a circular polarization, there is no need to separately measure the horizontal and vertical polarizations. Therefore, the measurement time can be shortened by more than 1/2, and further, its small volume with a planar structure can reduce greatly idle space required for the maintenance.

Fabrication and Microstructure of Metal-Coated Carbon Nanofibers using Electroless Plating (무전해 도금을 이용한 금속 코팅된 탄소나노섬유의 제조 및 미세조직)

  • Park, Ki-Yeon;Yi, Sang-Bok;Kim, Jin-Bong;Lee, Jin-Woo;Lee, Sang-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.43-48
    • /
    • 2007
  • The absorption and the interference shielding of electromagnetic wave have been very important issues for commercial and military purposes. The stealth technique is one of the most typical applications of electromagnetic wave absorption technology. This study has started for the development of composite fillers containing dielectric and magnetic lossy materials. To improve the electromagnetic characteristics of conductive nano fillers, carbon nanofibers (CNFs) with nickel-phosphorous (Ni-P) or nickel-iron (Ni-Fe) have been fabricated by the electroless plating process. Observations by the electron microscopy (SEM/TEM) and element analyzer (EDS/ELLS) showed the uniform Ni-P and Ni-Fe coated CNFs. The compositions of the plating layers were about Ni-6wt%P and Ni-70wt%Fe, respectively. The average thicknesses of the plating layers were about $50\;{\sim}\;100\;nm$.

Flexible CdS Films for Selective control of Transmission of Electromagnetic Wave (유연성 기판위에 스퍼터링법으로 제조한 CdS 박막의 전자파차폐 특성평가)

  • Hur, Sung-Gi;Cho, Hyun-Jin;Jung, Hyun-Jun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.27-27
    • /
    • 2009
  • Non-stochiometric CdS:H films grown on polyethersulfon (PES) flexible polymer substrates at room temperature by R.F. sputtering technique. They exhibited a dark- and photo-sheet resistance of $2.7\times10^5$ and $\sim\;50\;{\Omega}$/square, respectively. These values were realized by an optimum control of both hydrogen doping-levels and the surface morphologies of the films. The comparison between the real and the simulated results for the shielding and the transmission by the free space measurement system in the X-band frequency range (8.2 - 12.4 GHz) was also addressed in this study. Samples overlapped with 13 layers of CdS:H/PES were consistent with the transmission results of pure aluminum metal films ($0.1\;{\Omega}$/square) deposited on PES substrates. As a result, by the simples tacking of the CdS:H/PES layers, the perfect control of the shielding and the transmission of the EM wave in the range of X-band frequency is possible by avisible light alone, and their results are especially very outstanding findings in the stealth function of the radome(Radar+Dome) such as aircrafts, ships, and missiles.

  • PDF

A Study on the Design of High-Voltage Connector for Green Car using FEM (유한요소법을 이용한 친환경 자동차용 고전압 커넥터 설계에 관한 연구)

  • Kim, Sung-Woong;Choi, Jung-Wook;Kim, Hyeung-Rak;Kwon, Young-Seok;Kang, Nam-Jin;Choi, Kyung-Seok;Park, Hyung-Pil;Cha, Baeg-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.716-723
    • /
    • 2011
  • The battery capacity of electric/hybrid vehicle is much larger than present automobile. For that reason, the connector of Green Car should be designed to transmit the high-electric voltage. In addition, the electromagnetic wave should be shielded to protect communication and signal circuits. In this study, shielding performance of the connector was analyzed through electromagnetic shield analysis, and a connector of Green Car was designed using thermoelectrical analysis, which is capable of transmitting the high-electric power. In the design of connector structure, the improved stability and workability was considered.

Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation (전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상)

  • Lee, Yeong Ju;Kim, Hyun Bin;Lee, Seung Jun;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.