• Title/Summary/Keyword: electromagnetic wave radar

Search Result 189, Processing Time 0.026 seconds

Development of Performance Analysis 80 kW High-efficiency Permanent Magnet Generator for Radar System Power Supply (레이더 체계 전원공급용 80 kW급 고효율 영구자석형 발전기 개발 및 성능분석)

  • Ryu, Ji-Ho;Cho, Chong-Hyeon;Chong, Min-Kil;Park, Sung-Jin;Kang, Kwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.60-71
    • /
    • 2019
  • Electrical power supply is needed to operate the radar system in the field. In addition, it should not cause performance deterioration under the environmental factors due to characteristics of military equipment, and should not cause malfunction due to electromagnetic waves generated in radar, and then should not cause malfunction in radar equipment. Therefore, By applying a permanent magnet to the rotor of the generator, light weighting and high efficiency of generator were achieved. As a result, electrical performance test of the generator, the rated output power was 80.8 kW, the maximum output power was 88.1 kW, and the output power efficiency was 98.1 % under the full load condition. When the load capacity of the generator was changed from no load to full load, the maximum voltage variation was 3.6 % and the frequency variation was 0.3 %. As a result of the transient response test for measuring the output power of the generator according to the load characteristics change, the maximum voltage variation of 7.9 %, frequency variation of 0.5 % were confirmed, and the transient response time was 2.1 seconds. Environmental tests were conducted in accordance with MIL-STD-810G and MIL-STD-461F to evaluate the operability of the generator groups. Normal operation of radar system generator group was confirmed under high temperature and low temperature environment conditions. Electromagnetic tests were conducted to check if electromagnetic wave generated from both radar system and generator group in operation caused any performance deterioration to each other. As a result, it was confirmed that the performance deterioration due to electromagnetic wave inflow, radiation, and conduction did not occur. It is expected that it should be possible to provide high efficiency power supply and stable power supply by applying to various military system as well as radar system.

Leakage Signal Canceller and Adaptive Algorithm in Millimeter-Wave Seeker (밀리미터파 탐색기 내 누설신호 상쇄기 및 적응형 알고리즘에 관한 연구)

  • Park, Ji An;Song, Sung Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.88-94
    • /
    • 2019
  • A leakage canceller and adaptive algorithm for FMCW Radar is presented. Because a strong leakage signal causes various problems in the transceiver and digital processor, specific FMCW radars are in need of a leakage canceller. The leakage canceller has an adaptive structure and the algorithm calculates the prediction vector and learns the adaptive coefficient simultaneously. The proposed algorithm an improvement of 10 dB in the cancellation performance.

Soil Moisture Measurement of Bare and Vegetated Surfaces by X-band Radars

  • Oh, Yi-Sok;Kwon, Soon-Gu;Hwang, Ji-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.212-218
    • /
    • 2010
  • The radar backscatter from various earth surfaces is sensitive to the frequency of the incident wave. This study examined the radar sensitivities for surface parameters such as soil moisture content and surface roughness of both bare and vegetated surfaces at X-band. Because L-band frequencies are often used for sensing the surface parameters, the sensitivities of X-band are also compared with those of the L-band. The sensitivities of the X-band radar backscatter were examined with respect to soil moisture content and surface roughness of rough bare soil surfaces. These sensitivities were also examined using the same parameters for vegetated surfaces for various vegetation densities and incidence angles. Use of the X-band radar for soil moisture detection was as effective as L-band radar for bare soil surfaces. For vegetated surfaces, the soil moisture could be detected using an X-band radar at lower incidence angles, where the upper limit of the incidence angles was dependent on vegetation density.

Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption (전자기파 흡수용 복합재료의 기계적 강도평가)

  • 오정훈;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF

Polarimetric Analysis of the Electromagnetic Waves Scattered from Random Surfaces-Full Wave Solutions (랜덤 표면으로부터 산란되는 전자파의 편파적 해석)

  • Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.273-288
    • /
    • 1997
  • In this work, the electromagnetic waves scattered from 2-dimensional random rough surfaces are characterized by the $4\times4$ Mueller matrix elements. The full wave solutions are used to compute these elements. The results of the full wave solutions for 1-dimensional random rough surfaces were shown to agree well with those of the experiment and the method of moments. The Mueller matrix elements are related to the like and cross polarized radar cross sections as well as to the relative phase of the vertically and horizontally polarized waves. The $4\times4$ Mueller matrix elements completely characterize electromagnetic scattering from target. The computed results of this paper can be useful to the field of active remote sensing or RCS.

  • PDF

Radar Image Extraction Scheme for FMCW Radar-Based Human Motion Indication (FMCW 레이다 기반 휴먼 모션 인지용 레이다 영상 추출 기법)

  • Hyun, Eugin;Jin, Young-Seok;Jeon, Hyeong-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.411-414
    • /
    • 2018
  • In this paper, we propose a radar image extraction scheme for frequency modulated continuous wave radar-based human motion indication. We extracted three-dimensional(3D) range-velocity-angle spectra and generated three micro-profile images by compressing the 3D images in all three directions in every frame. Furthermore, we used body echo suppression to make use of the weak reelection such as in hands and arms. By applying the complete images to classifiers, various human motions can be indicated.

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

A Study on Radar Absorbing Structure for Aircraft (항공기용 전파흡수 구조 연구)

  • Han, Won-Jae;Jang, Byung-Wook;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.24-28
    • /
    • 2010
  • The purpose of this study is to define available microwave absorbing structure for aircraft from in the X-band(8.2~12.4GHz) frequencies. The electromagnetic wave absorption or shielding techniques is an important issue not only for military purpose but also for commercial purposes. Aircraft Radar Absorbing Structure(RAS) is absorbed or scattered propagation waves from the enemy radar. There are absorbing technologies at shaping design techniques and using Radar Absorbing Materials(RAM). RAM is more important because shaping design can't include perfect radar absorbing performance. In this study, based on material properties was introduced RAM and to analyze the each characteristics. Finally, we comparison appropriate RAM for aircraft.

  • PDF

A Study on Measuring Technique of Electromagnetic Wave Absorbing Characteristics of Microwave Absorbers (전파흡수체의 전파흡수특성측정기법에 관한 연구)

  • 김동일;안영섭;정세모
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1992.10a
    • /
    • pp.2-29
    • /
    • 1992
  • According to the increase of occupation density of microwave frequency band on use microwave environments have been congested extensively. For shielding unnecessary electromagnetic wave of preventing the electromagnetic wave reflection a good conductor a low resistive material or a lossy material is mainly used. As a method to measure the absorbing characteristics of microwave absorber the fundamental microwave measuring method can be used. There is however a big problem in measuring errors since the wavelength of microwave is very short especially as in the case as microwave absorber for RADAR. Therefore this research aimed to a converting adaptor of 20mm${\Phi}$ coaxial tube from a Type-N connector to 20mm${\Phi}$ coaxial tube and to use it for designing microwave absorber and evaluating absorbing characteristics. Furthermore the measurements of absorbing characteristics and material constants have performed and reviewed which were carried out by using the coaxial tube in the short type and by using rectangular waveguide respectively As a result the validity of the measured values have been confirmed.

  • PDF

Tunable Composite Right/Left-Handed Delay Line with Large Group Delay for an FMCW Radar Transmitter

  • Park, Yong-Min;Ki, Dong-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.166-170
    • /
    • 2012
  • This paper presents a tunable composite right/left-handed (CRLH) delay line for a delay line discriminator that linearizes modulated frequency sweep in a frequency modulated continuous wave (FMCW) radar transmitter. The tunable delay line consists of 8 cascaded unit cells with series varactor diodes and shunt inductors. The reverse bias voltage of the varactor diode controlled the group delay through its junction capacitance. The measured results demonstrate a group delay of 8.12 ns and an insertion loss of 4.5 dB at 250 MHz, while a control voltage can be used to adjust the group delay by approximately 15 ns. A group delay per unit cell of approximately 1 ns was obtained, which is very large when compared with previously published results. This group delay can be used effectively in FMCW radar transmitters.