• Title/Summary/Keyword: electromagnetic simulation

Search Result 1,584, Processing Time 0.025 seconds

Simulation of PO method based on Multi-thread (멀티스레드 기반 PO법 시뮬레이션)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2301-2306
    • /
    • 2011
  • Current general-purpose electromagnetic field simulators have been widespread applied, and is being used to electromagnetic problems such as antenna design, EMC design, measurement, and microwave device design, etc. This paper is to solve various electromagnetic problems in X-band region for utilizing multi-core-based PC available network resources more efficiently. The electromagnetic field simulator based on TCP / IP-based network topology, configuration, and its framework design is proposed and its availability is examined.

Reduction of Noise and Vibration in SRM Using Current Shape Control

  • Cho, Kyung-Sik;Kwon, Sung-Ha;Park, Hong-Bae;Han, Jeong-Yup;Jeung, Eun-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1023-1027
    • /
    • 2004
  • Since the change of the radial electromagnetic force is a main cause of noise and vibration of the SRM, this paper proposes a method to reduce the change of the electromagnetic force of an SRM. The technique is based on the control of the current shape associated with each phase using switches of the converter to drive an SRM. And we analyze the relation between the derivative of the radial electromagnetic force and the phase currents. A simulation is given to demonstrate our results.

  • PDF

Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System (급속 금형가열 시스템 개발을 위한 고주파 유도가열 과정의 유한요소해석)

  • Hwang, J.J.;Kwon, O.K.;Yun, J.H.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.113-119
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers a finite element analysis of the induction heating process which can rapidly raise mold temperature. To simulate the induction heating process, the electromagnetic field analysis and transient heat transfer analysis are required collectively. In this study, a coupled analysis connecting electromagnetic analysis with heat transfer simulation is carried out. The estimated temperature changes are compared with experimental measurements for various heating conditions.

Optimal Design of Electromagnetic Type Active Control Engine Mount in Consideration of Actuator Efficiency (능동 및 수동 특성을 고려한 전자석 구동형 능동 엔진 마운트의 최적화)

  • Lee, Bo-Ha;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1112-1118
    • /
    • 2007
  • This paper investigates the performance of an electromagnetic type active control engine mount (ACM) recently developed in the laboratory. The ACM employs the basic structure of the conventional hydraulic engine mount of which upper chamber is connected to a dual magnet electromagnetic actuator. The actuator, that essentially replaces the existing decoupler of the conventional passive hydraulic engine mount, actively controls the upper chamber pressure. Using the linearized ACM model incorporated with the actuator dynamics, we suggest an optimal design of ACM, maximizing the actuator efficiency as well as the vibration isolation efficiency.

  • PDF

Lumped Parameter Modeling and Analysis of Electromagnetic Linear Actuator (전자기 리니어 액츄에이터의 집중매개변수 모델링 및 해석)

  • Jang, Jae-Hwan;Cho, Seong-Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.18-24
    • /
    • 2016
  • An electromagnetic linear actuator is controlled precisely and securely and is useful in devices that require linear motion. The most commonly used method in the performance verification process for an electromagnetic actuator is finite element analysis that utilizes CAE. However, finite element analysis has the disadvantage that modeling and analysis consume a lot of time. Accordingly, lumped parameter analysis can be an alternative approach to the finite element method because of its computation iteration capability with fair accuracy. In this paper, the lumped parameter model and simulation results are presented. In addition, the results of the lumped parameter analysis are compared with those obtained from finite element analysis for verification.

Fuzzy Controller Modeling for Electromagnetic Levitation Systems based on Clustering Algorithm (클러스터링에 기초한 자기부상시스템의 퍼지제어기 모델링)

  • Kim, Min-Soo;Byun, Yeun-Sub;Lee, Kwan-Sup
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.145-159
    • /
    • 2006
  • This paper describes the development of a clustering based fuzzy controller of an electromagnetic suspension vehicle using gain scheduling method and Kalman filter for a simplified single magnet system. Electromagnetic suspension vehicle systems are highly nonlinear and essentially unstable systems For achieving the levitation control of the DC electromagnetic suspension system, we considered a fuzzy system modeling method based on clustering algorithm which a set of input/output data is collected from the well defined Linear Quadratic Gaussian(LQG) controller. Simulation results show that the proposed clustering based fuzzy controller methodology robustly yields uniform performance with adequate gap response over the mass variation range.

  • PDF

A Design of Active Vibration Control System Using Electromagnetic Actuators (전자기 액츄에이터를 이용한 진동제어시스템)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Caraiani, Mitica;Kang, Dong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.936-939
    • /
    • 2006
  • The pneumatic isolator is widely adopted for anti-vibration of precision measuring and manufacturing equipments. But, when the precision demand on anti-vibration is extreme or the load is moving, the performance of anti-vibration can not meet satisfaction. In these cases, as a complementary, active vibration suppression system can be added for advanced performance. In this paper, an active control system is presented, which uses electromagnetic actuators for vibration suppression. The anti-vibration characteristic of pneumatic isolator is analyzed for system modeling and actuator specifying. The modeling and the 3D dynamic simulation is performed for control system design. For the electromagnetic actuator design, the magnetic flex density and the current-force characteristic analysis are achieved.

  • PDF

Design and Analysis of a Vibration-Driven Electromagnetic Energy Harvester Using Multi-Pole Magnet

  • Munaz, Ahmed;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.172-179
    • /
    • 2012
  • This paper presents the design and analysis of a vibration-driven electromagnetic energy harvester that uses a multi-pole magnet. The physical backgrounds of the vibration electromagnetic energy harvester are reported, and an ANSYS finite element analysis simulation has been used to determine the different alignments of the magnetic pole array with their flux lines and density. The basic working principles for a single and multi-pole magnet are illustrated and the proposed harvester has been presented in a schematic diagram. Mechanical parameters such as input frequency, maximum displacement, number of coil turns, and load resistance have been analyzed to obtain an optimized output power for the harvester through theoretical study. The paper reports a maximum of 1.005 mW of power with a load resistance of $1.9k{\Omega}$ for 5 magnets with 450 coil turns.

Calculation of Power Frequency Electromagnetic Field Around the Kyeongbu High Speed Railways (경부고속철도 주변의 60 Hz 전자계 분포 예측에 관한 연구경부고속철도)

  • Kim, E.S.;Myung, S.H.;Lee, B.Y.;Han, I.S.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1648-1650
    • /
    • 1997
  • The effects of power frequency electric and magnetic fields have been a source of concern for many years. Electromagnetic fields can pose a theat to both signal system of electrified railways and human body around railways. It is believed that, though the electromagnetic fields do no serious harm to human health, they do induce biological effects. This paper estimates the electromagnetic fields near Kyeongbu high speed railways with numerical data. The charge simulation method and surface charge method are used to calculate the electric field of 2 dimensional power distribution lines and rails and magnetic field is calculated on the base of Biot-Sarart's law.

  • PDF

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF