• Title/Summary/Keyword: electromagnetic scattering

Search Result 372, Processing Time 0.029 seconds

Static Effect in Magnetotelluric Responses: An Implication from the EM Integral Equation (MT 탐사 반응에서 정적효과: 적분방정식을 통한 고찰)

  • Yoonho Song
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.181-195
    • /
    • 2024
  • This tutorial explains that the static effect in the magnetotelluric (MT) survey is a physical phenomenon caused by charges accumulated on the boundaries of subsurface inhomogeneities. To facilitate understanding of the physical phenomenon, differences between static induction and charge accumulation on the boundary are explained and analyzed with help of schematic illustrations. Subsequently, from the electromagnetic (EM) integral equation formulation, it is clearly shown that the secondary electric field due to charges accumulated on the interface in the presence of the primary field appears as the static effect. Therefore, except in the cases of the layered earth or a two-dimensional earth with transverse magnetic (TM) mode excitation, the static effect always exists in MT responses and further, it is not 'static' but rather frequency dependent. Despite the fact that the static effect is a secondary electric field due to inhomogeneity, inevitable under-sampling in the frequency and spatial domains prevent the effect from being handled properly in numerical inversion. Therefore, considering the practical aspects of the MT survey, which cannot be a continuous measurement covering the entire survey area over a wide frequency band, a three-dimensional (3-D) inversion incorporating the static shift as a constraint with the Gaussian distribution is introduced. To enhance understanding of the integral equation EM modeling, the formulation of the 3-D integral equation and mathematical analyses of the Green tensor and scattering current are described in detail in the Appendix.

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

A Hybrid RCS Analysis Code Based on Physical Optics and Geometrical Optics (PO-GO 연계기법을 이용한 RCS 해석코드 개발)

  • Jang, Min-Uk;Myong, Rho-Shin;Jang, In-Mo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.958-967
    • /
    • 2014
  • A hybrid method based on high-frequency asymptotic optics was developed in order to predict the RCS of flying vehicles for RCS reduction studies. In cavity return, the rays are assumed to bounce from the inlet cavity based on the laws of geometrical optics and to exit the cavity via the aperture. In other parts of a flying vehicle, the physical optics method is applied to compute the back-scattered field from the solid surface. The hybrid method was validated by considering simple models of sphere and sphere with cavity. In addition, RCS analysis of a flying vehicle was conducted using the new hybrid electromagnetic scattering method based on physical optics and geometrical optics theories.

3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability (MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링)

  • Yang, Seo-Min;Lee, Hyeok-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1143-1155
    • /
    • 1999
  • 셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.

Development of a Computational Electromagnetics Code for Radar Cross Section Calculations of Flying Vehicles (비행체 RCS 예측을 위한 CEM 기법 연구)

  • Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • The ability to predict radar return from flying vehicles becomes a critical technology issue in the development of stealth configurations. Toward developing a CEM code based on Maxwell's equations for analysis of RCS reduction schemes, an explicit upwind scheme suitable for multidisciplinary design is presented. The DFFT algorithm is utilized to convert the time-domain field values to the frequency-domain. A Green's function based on near field-to-far field transformation is also employed to calculate the bistatic RCS. To verify the numerical calculation the two-dimensional field around a perfectly conducting cylinder is considered. Finally results are obtained for the scattering electromagnetic field around an airfoil in order to illustrate the feasibility of applying CFD based methods to CEM.

Non-uniform Leaky Wave Structure Composed of Finite Conducting Strip Array on a Grounded Dielectric Layer (접지된 유전체층 위에 위치한 유한한 도체스트립 배열구조로 구성된 비균일 누설파구조)

  • Lee, Jong-Ig;Lee, Cheol-Hoon;Cho, Young-Ki
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.45-53
    • /
    • 1999
  • Electromagnetic scattering by finite number of conducting strips loaded on a grounded dielectric is considered for the TM polarization case from the viewpoints of transmitting(receiving) leaky wave antenna and grating coupler. An integro-differential equation whose unknowns are the induced currents over the strips is derived and solved by use of the method of moments. In order to construct the non-uniform leaky wave structures with specific source(current) distributions over the strips, distances between two adjacent strips and strip width are simultaneously varied along the structure. From some results for the current distributions over the strips and surface wave powers, it is observed that the maximum coupling efficiencies of the appropriately constructed non-uniform leaky wave structures from the viewpoints of both a receiving leaky wave antenna and a grating coupler amount upto 95%, which are about 15% improvements compared with those(80%) of the uniform structures.

  • PDF

Effective Design of the Broadband Horn Antenna Using Multi-mode Network Analysis (다중모드 회로망 분석을 이용한 광대역 혼 안테나의 효율적인 설계)

  • Moon, Jung-Ick;Cho, In-Gui;Kim, Sung-Min
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • This paper proposes the effective design procedure for a broadband, double-ridged horn antenna for evaluating the performance of the RF energy harvesting system with a multi-band rectenna. Using multi-mode network analysis, the higher-mode scattering parameters of the transition and horn were acquired and applied to the antenna design, respectively. As a result, the computing time could be reduced and the calculated VSWR(voltage standing wave ratio) of the antenna was very similar to the analyzed result using fully electromagnetic simulation. And there was also good agreement between the simulated and measured results. The designed broadband antenna has a bandwidth of 660~6360 MHz and 6~13.7 dBi peak radiation gain.

A Study on the Integrity Assessment of Bare Concrete Bridge Deck based on the Attenuation of Radar Signals (레이더 신호의 감쇠특성을 고려한 일체식 콘크리트 교량 바닥판의 상태평가 방법 고찰)

  • Rhee, Ji-Young;Choi, Jae-Jin;Kim, Hong-Sam;Park, Ko-Eun;Choi, Myeong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.84-93
    • /
    • 2016
  • The signal characteristic of radar wave on concrete decks is determined by the attenuation of the radar due to the conversion of EM(Electromagnetic) energy to thermal energy through electrical conduction, dielectric relaxation, scattering, and geometric spreading. In this study, it is found that the attenuation of radar signal received on top rebars in bare deck concrete with 2 way travel time shows a general decreasing linear trend because of its same relative permittivity and conductivity. The radar signal after depth-normalization, can then be interpreted as being principally influenced by the content of chlorides penetrating cover concrete, which caused corrosion of rebars in bridge decks.

Topology Optimization of Beam Splitter for Multi-Beam Forming Based on the Phase Field Design Method (페이즈 필드 설계법 기반의 다중 빔 형성을 위한 빔 분배기 위상최적설계)

  • Kim, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this paper, a systematic beam splitter design for multi-beam forming is proposed. The objective of this research is to a design beam splitter that splits and focuses scattering microwaves into intense beams in multiple directions. It is difficult to split multi-beam to non-specific directions with theoretical approaches. Therefore, instead of using transformation optics(TO), which is a widely used process for controlling electromagnetic wave propagation, we used a systematic design process called the phase field design method to obtain an optimal topological structure of beam splitter. The objective function is to maximize the norm of electric field of the target areas of each direction. To avoid island structure and obtain the structure in one body, volume constraint is added to the optimization problem by using augmented Lagrangian. Target frequency is set to X-band 10GHz. The optimal beam splitter performed well in multi-beam forming and the transported electric energy of target areas improved. A frequency dependency test was conducted in the X-band to determine effective frequency range.

New Gain Function Based on Attenuation Characteristics of Ballast Track for GPR Analysis (GPR 분석을 위한 자갈궤도 자갈의 감쇄특성을 이용한 이득함수 개발)

  • Shin, Jihoon;Choi, Yeongtae;Jang, SeungYup
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2017
  • Ballasted track has been used as track system for more than 100 years. Ballasted track has advantages of low construction cost, flexible maintenance, low noise and vibration, and so on. However, ballasted track leads to continuous settlement which causes maintenance. Recently, increase in speed, traffic volume, and weight of train requires more frequent maintenance. Fouling, well-known phenomenon of accumulation of fine materials due to intrusion of subgrade and breakage of ballast materials, expedites the settlement (i.e., irregular settlement) of track. Ground Penetrating Radar (GPR) can be one of non-destructive tools that can evaluate fouling level of ballast. In this paper, a gain function based on the attenuation characteristics of ballast material is suggested in conjunction with Hilbert transform. Lab box tests and full-scale tests indicate that the suggested method reasonably classifies clean, fouled layers, and subgrade. However, additional study to eliminate effect of sleeper and to include the scattering features of the electromagnetic wave in ballast voids should be required in order to enhance the accuracy.