• 제목/요약/키워드: electrolytic treatment

검색결과 166건 처리시간 0.022초

코어금형용강 SKD11의 플라즈마 전해산화에 의한 피막 형성 (Formation of Coatings on SKD11 Core Mold Steel by Plasma Electrolytic Oxidation)

  • 김상무;이태행;강석조;조영희;구자명
    • 열처리공학회지
    • /
    • 제24권4호
    • /
    • pp.209-216
    • /
    • 2011
  • Surface coatings were prepared on SKD11 core mold steel by plasma electrolytic oxidation (PEO). The coatings were investigated about the formation condition of core mold steel. SKD11 were coated by PEO in a mix solution of Sodium Aluminate $NaAlO_2$ (10 g/l), Sodium Silicate powder $Na_2SiO_3$ (0.5 g/l), Sodium tungstate dihydrate $Na_2WO_42H_2O$ (0.5 g/l) at less than $30^{\circ}C$. The electrical condition were voltage : 500~600 V; Pulse : 600~1800 Hz; current density 15~20 $A/dm^2$ various time : 3 min~40 min. The coatings surface morphology, cross-section, friction coefficient, hardness were investigated. The PEO coatings on SKD11 core mold steel showed the extended service life.

선박 평형수 처리용 대전류 인버터 방식의 정류기 설계 (Design of High-Current Inverter-type Rectifier for Electrolytic Disinfection of Ship Ballast Water)

  • 조원우;김진영;김인동;노의철;고강우;배상범
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.430-439
    • /
    • 2011
  • 세계화와 더불어 수출 입 물동량이 크게 늘어남에 따라 세계를 왕래하는 선박의 평형수(Ballast water) 속에 존재하는 해양 유기체에 의한 생태계의 파괴가 큰 문제가 되고 있다. 이와 같은 문제를 해결하기 위해 국제규약은 선박의 평형수를 배출할 때는 반드시 미생물을 제거한 다음 바다로 배출할 것을 요구하고 있다. 이는 위한 염소발생용 전기분해 수 처리 시스템을 위해 우수한 성능을 가지는 저전압 대전류 방식의 정류기의 필요성이 커지고 있다. 본 논문에서는 선박의 평형수 처리를 위한 해수 전기분해용 정류기에 적합한 저전압 대전류 정류기 방식을 제안하고, 정류기 전력회로 설계와 제어기 설계에 필요한 실제적인 설계 가이드라인을 제시하고자 한다.

플라즈마 전해산화법에 의해 형성된 알루미늄 합금의 양극산화피막 내마모 특성에 관한 연구 (A Study on the Wear Resistance Characteristics of Anodic Oxide Films Formed on Aluminium alloy using a Plasma Electrolytic Oxidation)

  • 정우철;진연호;최진주;양재교
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.381-386
    • /
    • 2018
  • In this study, plasma electrolytic oxidation (PEO) method was used to from anodic oxide films on Al alloy and their resistance and morphological characteristics were investigated as a function of film formation voltage and treatment time. Cross-sectional morphology and composition of the PEO films were analyzed by SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive Spectroscopy). The PEO films showed increased surface roughness and thickness with of film formation voltage and treatment time. The wear resistance was found to be the best for the PEO film formed for 5 min at 500V which is attributed to be denser structure relatively and lower surface roughness.

플라즈마 전해 산화 처리한 AZ31 및 Al18B4O33w/AZ31 마그네슘 복합재료 피막의 미세구조 및 부식특성 (Microstructure and Corrosion Properties of Plasma Electrolytic Oxide Coatings on AZ31 Magnesium Matrix Composite)

  • 천진호;박용호;박익민
    • 대한금속재료학회지
    • /
    • 제49권3호
    • /
    • pp.270-274
    • /
    • 2011
  • Plasma electrolytic oxidation (PEO) treatment was performed on squeeze cast AZ31 alloy and $Al_{18}B_4O_{33}w/AZ31$ composite. Scanning electron microscope (SEM) was employed to characterize the surface morphology and cross-section microstructure of the coating. The phase structures of the PEO coating were analyzed by X-ray diffraction (XRD). The corrosion resistance of the PEO coating was evaluated by electrochemical method. The results showed that the $Al_{18}B_4O_{33}$ whisker on the surface of the composite was decomposed and $MgAl_2O_4$ was formed in the PEO coating layer of $Al_{18}B_4O_{33}w/AZ31$ composite during PEO treatment. As a result, the electrochemical corrosion potential of the PEO coated $Al_{18}B_4O_{33}w/AZ31$ composite was increased compared with that of AZ31 alloy.

전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용 (Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process)

  • 박병흥;정상문
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.291-299
    • /
    • 2018
  • 파이로 공정에서는 사용후핵연료 관리 공정 개발의 일환으로 산화 우라늄을 고온 용융염 전해질계에서 전기화학적 방법으로 환원시키기 위한 전해환원 공정이 개발되고 있다. 이에 따른 전해환원 공정의 반응기 설계를 위해서는 전기화학적 이론에 기초한 모델이 요구되고 있다. 본 연구에서는 상 분리를 설명하는 phase-field 이론에 기초하여 우라늄 산화물의 전해환원 모사를 위한 1차원 모델이 개발되었다. 모델은 우라늄 산화물 내 산소 원소의 확산과 펠렛 표면에서 전기화학 반응 속도를 나타내는 매개변수를 사용하여 외부로부터 내부로 진행되는 전해환원을 잘 모사하고 있으며 계산 결과 전체 전류는 산소원소의 내부 확산에 크게 의존하는 것으로 나타났다. 전해환원 반응에 대한 모델은 대용량 장치 설계에 최적화된 조건 도출에 활용될 것으로 예상되며 장치 설계가 완료되면 공정 연계 모사에 직접 사용될 것으로 기대된다.

고주파용 유전체 세라믹 공진기의 표면처리 (Surface Treatment of Dielectric Ceramic Resonator for High Frequency Devices)

  • 박해덕;강성군
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.923-928
    • /
    • 2001
  • An electrolytic silver plating process has been successfully developed for terminated electrode parts of dielectric ceramic resonator. High adhesion strength and high Qu is obtained and blister occurance is minimized under plating condition with $HNO_3$750 $m\ell/\ell$ and HF $ 250m\ell/\ell$ solution at $25^{\circ}C$ for 20 minutes. Adhesion strength has the highest value, 3.2 kg/mm$^2$ at etching temperature of $25^{\circ}C$. Adhesion strength, Qu and blister occurance are monotonically increased with the thickness of electrodeposition layer. In case of electrodeposition of Ag, Qu value of 380 has obtained higher than in case of electrolytic Cu plating with Qu value of 325. Therefore, terminated electrode parts of dielectric ceramic resonator reducing dielectric loss can be obtained using prensent process.

  • PDF

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • 제5권2호
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

The Characteristic Study of Plasma Electrolytic Oxidation in AZ31B Magnesium Alloy

  • Yu, Jae-Yong;Choi, Soon-Don;Yu, Jae-In;Yun, Jae-Gon;Ko, Hoon;Jung, Yeon-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1746-1751
    • /
    • 2015
  • In this study low voltage Plasma Electrolytic Oxidation (PEO) was utilized to eliminate high voltage PEO drawbacks such as high cost, dimensional deformation and porosity. Low voltage PEO produces a thin coating which causes low corrosion resistance. In order to solve such problem, 0.1~0.6M pyrophosphates were added in a bath containing 1.4M NaOH, and 0.35M Na2SiO3. 70 V PEO was conducted at 25℃ for 3 minutes. Chemical composition, morphology and corrosion resistance of the anodized coating were analyzed. The anodized film was composed of MgO, Mg2SiO4, and Mg2O7P2. The morphology of film showed appropriately dense structure and low porosity in the anodized layers. It is found that low voltage Plasma Electrolytic Oxidation in cooperation with phosphating treatment can provide a good corrosion protection for the AZ31B magnesium alloy.

플라즈마 전해 산화 처리한 AZ91D 마그네슘합금 피막의 미세조직 및 부식 특성 (Microstructure and Corrosion Properties of AZ91D Magnesium Alloy treated by Plasma Electrolytic Oxidation)

  • 장시영;김예림;김양도
    • 한국주조공학회지
    • /
    • 제28권1호
    • /
    • pp.20-24
    • /
    • 2008
  • The characteristics, such as roughness, thickness, microhardness and corrosion resistance, of plasma electrolytic oxide coatings on AZ91D alloy were investigated under the processing condition of various coating times. The coatings on AZ91D alloy consisted of MgO, $MgAl_{2}O_{4}$ and $Mg_{2}SiO_{4}$ oxides. The surface roughness and thickness of coatings became larger with increasing the coating time. The microhardness in cross section of coatings was much higher than not only that in surface but that in the conventional anodic oxide coatings, which increased progressively as the coating time increased. After being immersed in 3.5%NaCl solution and methyl alcohol, the corrosion resistance of AZ91D alloy was markedly improved by plasma electrolytic oxidation coating treatment, and the AZ91D alloy coated for 50min revealed excellent corrosion resistance.

전해수의 특성에 관한 연구 (The Study of Characteristics of Electrolytic Water)

  • 이찬우;배기서
    • 한국염색가공학회지
    • /
    • 제18권6호
    • /
    • pp.43-48
    • /
    • 2006
  • Electrolytic water(EW), studied in recent decades in the Japan, Russia and United State of America, have shown promise as a method of disinfection whereby low levels of free chlorine, sodium hypochlorite, or hypochlorous acid may be produced in situ in Nacl-containing solution. These methods have shown promise in destruction of microorganisms in medical, dental environment, and in the agriculture and food industry. A recently EW treatment system was evaluated for reducing scouring agent and other surfactants in the washing and scouring process of textile industry Unfortunately, there is, to my knowledge, no serious studies of the properties of EW for textile industry In order to study the characteristics of EW and confirm the possibility of applications in textile industry processes, the pH, surface activity, penetration force, surface tension, and contact angle of EW was measured under various conditions. In general terms, What all this shows is that there is fundamental difference between the properties of EW and that of distilled water.