• Title/Summary/Keyword: electrolytic solution composition

Search Result 23, Processing Time 0.026 seconds

Formation Behavior of Passive State Film on Stainless Steel for Metallic Ion Concentration in Electropolishing Solution (전해 연마액 금속 이온 농도에 따른 스테인리스 스틸의 부동태 피막 형성 거동)

  • Oh, Jong Su;Kang, Eun-Young;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • The formation behavior of a passive state film on the surface of STS304 in electrolytic solution was analyzed to determine its metallic ion composition. The properties of passive state films vary depending on the Fe and Cr ions in the electrolytic solution. It was observed that the passive state film surface became flat and glossy as the concentration of Fe and Cr ions in the electrolytic solution increased. The corrosion resistance property of the passive state film was proportional to the amount of Fe and Cr in the electrolytic solution. An initial passive state film with high Fe concentration was formed on the surface of STS304 during early electrolytic polishing. Osmotic pressure of Fe ions occurs between the passive state film and electrolytic solution due to the Fe ion concentration gradient. The Fe in the passive state film is dissolved into the electrolyte, and Cr fills up the Fe ion vacancies. As a result, a good corrosion-resistant floating film was formed. The more Fe ions in the electrolytic solution, the faster the film is formed, and as a result, a flat passive state film containing a large amount of Cr can be formed.

Influence of Electrolytic KF on the Uniform Thickness of Oxide Layers Formed on AZ91 Mg Alloy by Plasma Electrolytic Oxidation

  • Song, Duck-Hyun;Lim, Dae-Young;Fedorov, Vladimir;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.495-500
    • /
    • 2017
  • Oxide layers were formed by an environmentally friendly plasma electrolytic oxidation (PEO) process on AZ91 Mg alloy. PEO treatment also resulted in strong adhesion between the oxide layer and the substrate. The influence of the KF electrolytic solution and the structure, composition, microstructure, and micro-hardness properties of the oxide layer were investigated. It was found that the addition of KF instead of KOH to the $Na_2SiO_3$ electrolytic solution increased the electrical conductivity. The oxide layers were mainly composed of MgO and $Mg_2SiO_4$ phases. The oxide layers exhibited solidification particles and pancake-shaped oxide melting. The pore size and surface roughness of the oxide layer decreased considerably with an increase in the concentration of KF, while densification of the oxide layers increased. It is shown that the addition of KF to the basis electrolyte resulted in fabricating of an oxide layer with higher surface hardness and smoother surface roughness on Mg alloys by the PEO process. The uniform thickness of the oxide layer formed on the Mg alloy substrates was largely determined by the electrolytic solution with KF, which suggests that the composition of the electrolytic solution is one of the key factors controlling the uniform thickness of the oxide layer.

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • Shin, Dal-Woo;Kim, Sung-Ho;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • 신달우;김성호;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

A Study on Enhancement of Np Extraction by TBP Through the Electrochemical Adjustment of Np Oxidation State by Using a Glassy Carbon Fiber Column Electrode

  • Kim, Kwang-Wook;Song, Kee-Chan;Lee, Eil-Hee;Park, In-Kyu;Yoo, Jae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.309-315
    • /
    • 2000
  • The changes of Np oxidation state in nitric acid and the effect of nitrous acid on the oxidation state were analyzed by spectrophotometry, solvent extraction, and electrochemical methods. An enhancement of Np extraction to 30 vol.% TBP was carried out through adjustment of Np oxidation state by using a glassy carbon fiber column electrode system. The information of electrolytic behavior of nitric acid was important because the nitrous acid affecting the Np redox reaction was generated during the electrolytic adjustment of the Np oxidation state. The Np solution used in this work consisted of Np(V) and Np(Ⅵ)without (IV). The composition of Np(V) in the range of 0.5M -5.5 M nitric acid was 32% ~ 19%. The electrolytic oxidation of Np(V) to Np(Ⅵ)in the solution enhanced Np extraction efficiency about five times higher than the case without the electrolytic oxidation. It was confirmed that the nitrous acid of less than about 10-5 M acted as a catalyst to accelerate the chemical oxidation reaction of Np(V) to Np(Ⅵ).

  • PDF

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water (전해수를 이용한 견섬유 정련 및 세리신 회수 (I))

  • 배기서;하헌주;박광수
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.249-258
    • /
    • 2002
  • Natural silk is formed by two proteins : the crystalline fibroin (inside the silk thread) and amorphous sericin (as a tube outside the thread). The degumming process is used to eliminate the external sericin prior to dyeing ; generally it makes use of soaps at about pH 10. Sericin is the protein constituent that "gums"together the fibroin filaments of cocoon silk. It constitutes about 25% of the weight of the cocoon, is soluble in hot water and "gels" on cooling. The removal of sericin from raw silk, known as degumming, is a simple but important process usually employing hot dilute soap or alkaline solution and occasionally dilute acids or enzymic methods. During degumming, alkali is taken up by the sericin and the free acid from the soap is formed ; this may be deposited on the fiber, reducing the rate of degumming and protecting it from hydrolysis. Alkali is often added to maintain or restore the pH of the baths, but it is rarely used alone, since it leaves the silk rather harsh in handle. If complete sericin removal is required as for printing, sodium carbonate may be added. If the pH of the bath exceeds 11, the fibroin is attacked. Recently, According to the development of electrolysis, we can be obtained the electrolytic reduction water(above pH 11.5) and electrolytic oxidation water (below pH 3). The aim of this work was to study a degumming process using electrolytic water and a possibility of sericin recovery. The new degumming process used electrolytic water operates at $95^\circ{C}$ for 2hr. without any reagents. The wastewater of this process are formed by a solution of sericin in water. This conditions suggest the study of a possible recovery of this protein (sericin) which has an amino acid composition suitable for many used in cosmetics, textile finishing agents, animal feeding, etc. The degumming process using electrolytic water is available to reduce treatment costs and pollute and at the same time to recover sericin.

Analysis of Oxide Coatings Formed on Al1050 Alloy by Plasma Electrolytic Oxidation (Al1050 합금에 Plasma Electrolytic Oxidation으로 형성된 산화피막 분석)

  • Kim, Bae-Yeon;Lee, Deuk-Yong;Kim, Yong-Nam;Jeon, Min-Seok;You, Whan-Sik;Kim, Kwang-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.295-300
    • /
    • 2009
  • The crystal structure of surface coatings on Al1050 alloy by PEO (Plasma Electrolytic Oxidation), were investigated. The electrolyte for PEO was Na-Si-P system solution. The main crystalline phase were $\gamma$-alumina and $\alpha$-alumina. Crystallinity was increased with applied voltage and applied time. The dominant crystalline phase were affected not only chemical composition of Al alloy substrate and electrolyte, but also the +/- ratio of applied voltage.

Effect of Flow Rate on the Continuous Cycling Electrolytic Treatment Process for Silver Ion Containing Wastewater (은 함유 폐수의 연속 순환 전해처리 시 유량변화가 회수 공정에 미치는 영향)

  • Chung, Won-Ju;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.577-580
    • /
    • 2007
  • The influence of flow rate has been investigated on the treatment efficiency of continuous cycling electrolytic process employing artificial and actual photographic wastewater which containing silver ion. For artificial wastewater, the treatment efficiency of process was found to rise ca. three times when the flow rate of wastewater was increased from 3 mL/min to 15 mL/min. The process efficiency was doubled under the same condition regarding actual wastewater. The effect of flow rate on the treatment efficiency was observed to be altered according to the metal ionic form and solution composition. The coefficient of mass transfer was estimated using model equation, which verified that the raised treatment efficiency at higher flow rate was due to the increased mobility of ionic species.

Plasma Electrolytic Oxidation Treatment of Magnesium Alloys (마그네슘 합금의 플라즈마전해산화 처리 기술)

  • Mun, Seong-Mo;Kim, Ye-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.123.2-123.2
    • /
    • 2016
  • Mg alloys have been developed for automobile and mobile equipments because of their low density of $1.7g/cm^3$. One of the main problems of Mg alloys is their poor corrosion resistance which has limited their wide applications. Plasma electrolytic oxidation (PEO) method is one of the promising surface treatment methods for Mg alloys. In this presentation, experimental data about the effects of solution composition and form of current are presented and discussed in view of dielectric breakdown and reformation of PEO films The role of various anions of phosphate, silicate, fluoride, carbonate and hydroxide ions is discussed in view of film breakdown and reformation of PEO films.

  • PDF

Effect of Al Alloy Composition on Physical and Crystallographical Properties of Plasma Electrolytic Oxidized Coatings II. Crystallographic Analysis of PEO Layer (플라즈마 전해 산화 코팅에 있어서 알루미늄 합금 모재 성분의 물리적, 결정학적 영향 II. PEO 층의 결정상 분석)

  • Kim, Bae-Yeon;Lee, Deuk-Yong;Shin, Min-Chul;Shin, Hyun-Gyoo;Kim, Byeong-Kon;Kim, Sung-Youp;Kim, Kwang-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • Physical properties of Plasma electrolytic oxidized 8 different kinds of Al alloys, A-1100, A-2024, A-5052, A-6061, A-6063, A-7075, ACD-7B and ACD-12 were investigated. The electrolyte for PEO was $Na_2SiO_3$ and NaOH and some alkali earthen metal salts system solution. $\eta$-alumina, as well as $\gamma$-alumina, was main crystal phase, which were ever reported. Also, $Al_{4.95}Si_{1.05}O_{9.52}$ was found only in this research. So we can conclude that the process conditions of PEO apparatus and composition and concentration of its electrolyte affects crystal structure and physical properties of PEO layers much more than the compositions of Al alloy.