• Title/Summary/Keyword: electroluminescent device

Search Result 225, Processing Time 0.058 seconds

Molecular Conformation and Application of Stereoregular PMMA Langmuir-Blodgett Films

  • Kim, Jang-Joo;Jung, Sang-Don;Hwang, Wol-Yon
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.195-206
    • /
    • 1996
  • Molecular conformations of stereoregular poly(methyl methacrylate) (PMMA) monolayers have been investigated by scanning probe microscopes. Isotactic and syndiotactic PMMAs were found to have right and left hand helical structures, respectively. On the contrary atactic PMMA showed rather random arrangement of the chains. It has been demonstrated that the PMMA Langmuir-Blodgett (LB) films can be utilized to form nanoscale patterns down to 50 nm and to forma geodesic lens. It has also been manifested that the quantum efficiency of a polymer electroluminescent device can be significantly enhanced by inserting the PMMA LB films between the emitting layer and the cathode. All the applications utilize the unique characteristics of the LB films to form thin and uniform films in the molecular level.

  • PDF

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices

  • Han, Chang-Yeol;Yang, Heesun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.449-469
    • /
    • 2017
  • The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.

Pyromellitic dianhydride as a cathode interfacial layer in the organic light emitting diodes: thickness optimization and its electroluminescent characteristics

  • Nam, Eun-Kyoung;Moon, Mi-Ran;Son, Dong-Jin;Park, Keun-Hee;Jung, Dong-Geun;Kim, Hyoung-Sub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.837-838
    • /
    • 2009
  • In this work, pyromellitic dianhydride (PMDA) was used as a cathode interfacial layer in the organic light emitting diodes (OLEDs) and its thickness was optimized. Various electrical and optical characterizations of the OLEDs having various thicknesses of the PMDA cathode interfacial layer revealed that the best OLED performance could be achieved by using 0.5 nm-thick PMDA layer compared to the control device without any interfacial layer.

  • PDF

A New Door for Molecular-Based Organic Electroluminescent Devices

  • Jou, Jwo-Huei;Wang, Wei-Ben;Hsu, Mao-Feng;Lai, Wen-Hsuan;Chen, Chin-Ti;Chin, Chih-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.350-353
    • /
    • 2009
  • While the comparatively high MW would make the employed molecules extremely difficult to vacuum-evaporate, and result in poor device performance, the wet-process has been proven to be quite effective and convenient as usual to the fabrication of high-efficiency OLEDs composing high MW components.

  • PDF

Phosphorescent Iridium(III) Complexes based on the ppy Ligands Containing Electron-withdrawing Carbonyl Groups

  • Lee, Kum-Hee;Park, Jeong-Keun;You, Jae-Nam;Seo, Ji-Hyun;Kim, Young-Kwan;Yoon, Seung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.762-766
    • /
    • 2009
  • We have synthesized and demonstrated a red emission in Organic Light Emitting Diodes (OLEDs) using phosphorescent iridium(III) complexes based on the 2-phenylpyridine ligands with electron-withdrawing carbonyl groups. Among those, a device exhibited highly efficient red-orange emission with the luminance of 20460 cd/$m^2$ at 12 V, the luminous efficiency of 22.0 cd/A at 20 mA/$cm^2$, and the $CIE_{x,y}$ coordinates of (x=0.560, y=0.439 ) at 10 V.

  • PDF

Highly efficient deep-blue electroluminescence using doped PCVtPh with a new host material

  • Park, Jeong-Keun;Lee, Kum-Hee;Kim, Seul-Ong;Park, Jung-Sun;Seo, Ji-Hoon;Kim, Young-Kwan;Yoon, Seung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.775-778
    • /
    • 2009
  • Novel blue host material, 4,4'-(dinaphthalen-2-yl)-1,1'-binaphthyl (DNBN), was designed and synthesized for OLEDs. In order to test the electroluminescent properties of DNBN, DNBN was used as the host materials for a blue emitter, PCVtPh. The device exhibited deep-blue emission with the CIEx,y coordinates (x=0.15, y=0.08) at 8.0 V, a luminous efficiency of 1.66 cd/A, a power efficiency of 0.77 lm/W and an external quantum efficiency of 2.30 % at 20 mA/$cm^2$, respectively.

  • PDF

Emission Properties of P-LED EL Devices Based on ZnS:Mn,Cu (ZnS:Mn,Cu에 기초한 파우더형 EL소자의 발광특성)

  • 박수길;조성렬;손원근;김길용;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.147-150
    • /
    • 1998
  • Since P-ELD(powders type electroluminescent device) phenomena were found by G.Destriau at first In 1936, lots of studying was performed in order to realize surface emission devices and flat panel display as a backlight. Due to the problem of low luminance and color and so on, it was delayed. Recently using electric field and thermal effect which can change it\`s molecular arrangement, it can be developed using photoelectric properties of P-ELD. P-ELD in this study was prepared by casting method. Basic structure is ITO/Phosphor/insulator/Al sheet, each layer was mixed by binder, which concentration 11p(poise) for phosphor, 8p(poise) fort insulator. Dielectric properties was investigated first and emission properties of P-ELD based on ZnS:Mn,Cu/ZnS:Cu,Br mixture. P-ELD prepared in this work exhibits about 100cd/㎡ 1-kHz simusoidal excitation.

  • PDF

Phosphorescent Iridium Complexes for OLEDs Based on 1-Phenylpyrazole Ligands with Fluorine and Methyl Moieties

  • Yoon, Seung Soo;Song, Ji Young;Na, Eun Jae;Lee, Kum Hee;Kim, Seong Kyu;Lim, Dong Whan;Lee, Seok Jae;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1366-1370
    • /
    • 2013
  • A series of phosphorescent iridium(III) complexes 1-4 based on phenylpyrazole were synthesized and their photophysical properties were investigated. To evaluate their electroluminescent properties, OLED devices with the structure of ITO/NPB/mCP: 8% Iridium complexes (1-4)/TPBi/Liq/Al were fabricated. Among those, the device with 3 showed the most efficient white emission with maximum luminance of 100.6 $cd/m^2$ at 15 V, maximum luminous efficiency of 1.52 cd/A, power efficiency of 0.71 lm/W, external quantum efficiency of 0.59%, and CIE coordinates of (0.35, 0.40) at 15.0 V, respectively.

A Study on the properties of ELD of Mu1tistructure Using by Alq$_3$ (Alq$_3$를 이용한 다층 구조의 ELD 특성 연군)

  • 채수길;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.116-119
    • /
    • 1997
  • In this paper A double-layer organic electroluminescent(EL) device was fabricated using a TPD(N,N'-dipheny] -N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4.4'-diamine: aromatic diamine), as a hole-transport material and tris (8-hydroxy quinolinate) aluminum(Alq$_3$) as a an emiting material and its performance characteristics were investigated. structure of devices is ITO/TPD/Alq$_3$/Al. we have fabricated hole transport layer of two types. Doping material of Hole Transport material is Poly(methyl methacrylate)(PMMA) and PEI(Poly-Ether-Imide). Carrier injection from the electrodes to the doped PMMA and PEI layer through the dopants and concomitant electroluminescence from Alq$_3$were observed. Green emission with luminance of 40cd/m$^2$was achieved at a drive voltage of 30V

  • PDF

Study on the Emission Properties of Visible Light Source using Energy Transfer (에너지전달을 이용한 가시광 Light Source의 발광특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Ju-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.486-489
    • /
    • 2003
  • Red organic electroluminescent(EL) devices based on poly(N-vinylcarbazole)(PVK) and tris(8-hydroxyquinorine aluminum)($Alq_3$) doped with red emissive material, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran(DCJTB), poly(3-hexylthiophene)(P3HT), Rubrene and 4-dicyanomethylene-2-methyl-6[2-(2,3,6,7-tetrahydro-1H,5H-benzo-[i.j])quinolizin-8yl)vinyl-4H-pyran(DCM2) were fabricated. We examine the energy transfer from $Alq_3$ to DCJTB, P3HT, Rubrene and DCM2 by comparing between the PL and EL spectrum. The maximum peak PL intensities were achieved when the doping concentration of DCJTB, DCM2, P3HT and Rubrene has 5, 1, 0.5, 2wt%, respectively. The maximum luminance of device using DCJTB showed $594\;cd/m^2$ at 15V.

  • PDF