• Title/Summary/Keyword: electroless nickel plating

Search Result 159, Processing Time 0.035 seconds

A Study on Reusing of Electroless Ni-Cu-P Waste Solution (無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구)

  • 오이식
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2001
  • Reusing of electroless Ni-Cu-P waste solution was investigated in the plating time, plating rate, solution composion and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 50f) waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 10 times over than that of batch type. Plating time of 50% waste solution additive at continuous type took longer 3.7 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by depolited inferiority and larger decreased plating rate.

  • PDF

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.

Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes (무전해 니켈 도금된 탄소나노튜브의 전자파 차폐 특성)

  • Kim, Do Young;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.268-273
    • /
    • 2014
  • In this study, multi-walled carbon nanotubes (MWCNT) were treated with nickel by electroless plating method for improving electromagnetic interference (EMI) shielding performance of MWCNT. The physical properties of electroless plated MWCNT were analyzed by using ultra-high resolution scanning electron microscope (UHR-SEM), thermogravimetry (TGA), sheet resistance analyzer and EMI shielding analyzer. EMI shielding efficiencies of nickel electroless plated MWCNT were measured to be 16 dB from 800 MHz band, which was 1.6 times increased compared to that of the activated MWCNT. Also, the average sheet resistance of nickel electroless plated MWCNT was measured to be $70{\Omega}/sq$, which was 56% decreased compared to that of the activated MWCNT. This result could be attributed to the plating morphology on the surface of MWCNT. This result could be attributed to uniformity of plating morphology on the surface, which has more effect on EMI shielding efficiency than the amount of nickel plating.

Electromagnetic Wave Shielding Effectiveness of Electroless Chemical Copper and Nickel Plating PET fabrics (구리와 니켈 금속이 무전해 도금된 폴리에스테르 섬유의 구조에 따른 전자파 차폐성)

  • Chun, Tae-Il;Park, Jung-Hwan
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.385-388
    • /
    • 2008
  • Four kinds of PET fabrics were coated with Copper and Nickel by electroless chemical plating, and the electromagnetic wave shielding effectiveness for those samples have been examined. The shielding effectiveness showed between 90 dB and 70 dB, and it related to the fabric structure, such as cover factor and cloth density. The dense fabric structure showed the better shielding effect.

Preparation of Stock Solution for Electroless Nickel (무전해 니켈 도금액 제조)

  • 정승준;최효섭;박종은;손원근;박추길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.621-624
    • /
    • 1999
  • Metalization technology of the fine patterns by electroless plating is required in place of electrodeposition as high-density printed boards(PCR) become indispensable with the miniaturization of electronic components. Electroless nickel plating is a suitable diffusion barrier between conductor meta1s, such as Al and Cu and solder is essetional in electronic packaging in order to sustain a long period of service. Moreover, Electroless nickel has particular characteristics including non-magnetic property, amorphous structure. wear resistance, corrosion protection and thermal stability In this study fundamental aspects of electroless nickel deposition were studied with effort of complexeing agents of different kinds. Then the property of electroless deposit are controlled by the composition of the deposition solution the deposition condition such as temperature and pH value and so on. the characteristics of the deposits has been carried out.

  • PDF

Comparison of Acidic and Alkaline Bath in Electroless Nickel Plating on Porous Carbon Substrate (다공성 탄소전극상 무전해 니켈도금의 산성과 알칼리용액 비교 연구)

  • Chun, So-Young;Kang, In-Seok;Rhym, Young-Mok;Kim, Doo-Hyun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • Electroless nickel plating on porous carbon substrate for the application of MCFC electrodes was investigated. Acidic and alkaline bath were used for the electroless nickel plating. The pore sizes of carbon substrates were 16-20 ${\mu}m$ and over 20 ${\mu}m$. The carbon surface was changed from hydrophobic to hydrophilic after immersing the substrate in an ammonia solution for 40 min at $60^{\circ}C$. The contact angle of water was decreased from $85^{\circ}C$ to less than $20^{\circ}$ after ammonia pretreatment. The deposition rate in the alkaline bath was higher than that in the acidic bath. The deposition rate was increased with increasing pH in both acidic and alkaline bath. The content of phosphorous in nickel deposit was decreased with increasing pH in both acidic and alkaline bath. The contents of phosphorous is low in alkaline bath. The minimum concentration of $PdCl_2$ for the electroless nickel plating was 10 ppm in alkaline bath and 5 ppm in acidic bath. The thickness of nickel was not affected by the concentration of $PdCl_2$.

Relationship Between pH and Temperature of Electroless Nickel Plating Solution

  • Nguyen, Van Phuong;Kim, Dong-Hyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.33.1-33.1
    • /
    • 2018
  • pH is expressed mathematically as $pH=-{\log}[H^+]$, is a measure of the hydrogen ion concentration, [$H^+$] to specify the acidity or basicity of an aqueous solution. The pH scale usually ranges from 0 to 14. Every aqueous solution can be measured to determine its pH value. The pH values below 7.0 express the acidity, above 7.0 are alkalinity and pH 7.0 is a neutral solution. The solution pH can be determined by indicator or by measurement using pH sensor, which measuring the voltage generated between a glass electrode and a reference electrode according to the Nernst Equation. The pH value of solutions depends on the temperature and the activity of contained ions. In nickel electroless plating process, the controlled pH value in some limited ranges are extremely important to achieve optimal deposition rate, phosphorus content as well as solution stability. Basically, nickel electroless plating solution contains of $Ni^{2+}ions$, reducing agent, buffer and complexing agents. The plating processes are normally carried out at $82-92^{\circ}C$. However, the change of its pH values with temperatures does not follow any rule. Thus, the purpose of study is to understand the relationship between pH and temperature of some based solutions and electroless nickel plating solutions. The change of pH with changing temperatures is explained by view of the thermal dynamic and the practical measurements.

  • PDF

Microstructure Analysis of Ni-P-rGO Electroless Composite Plating Layer for PEM Fuel Cell Separator (고분자전해질 연료전지 분리판을 위한 Ni-P-rGO 무전해 복합도금층의 미세조직 분석)

  • Kim, Yeonjae;Kim, Jungsoo;Jang, Jaeho;Park, Won-Wook;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.199-204
    • /
    • 2015
  • Recently, fuel cell is a good alternative for energy source. Separator is a important component for fuel cell. In this study, The surface of separator was modified for corrosion resistance and electric conductivity. Reduced graphene oxide (rGO) was made by Staudenmaier's method. Nickel, phosphorus and rGO were coated on 6061 aluminum alloy as a separator of proton exchange membrane fuel cell by composite electroless plating. Scanning electron microscope, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were used to examine the morphology of Ni-P-rGO. Surface images were shown that the rGO was dispersed on the surface of Ni-P electroless plating, and nickel was combined with the un-reduced oxygen functional group of rGO.

Electroless Nickel Plating (무전해 니켈도금에 대하여(II))

  • 지태촌;여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.2
    • /
    • pp.57-67
    • /
    • 1982
  • Electroless Ni-plating is often utilized in industries due to its physical and mechanical characteristics in contrast to conventional electroplatings. Thus, electroless Ni-plating will be broadly applicated in many fields. However, The physial and mechanical properties of this depositss depend largely on the structure and P content of film and heat treatment. And here discused about the important results of those past research.

  • PDF

Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

  • Kim, Ji Hyun;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 were investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application.