• Title/Summary/Keyword: electroencephalography

Search Result 303, Processing Time 0.027 seconds

An ICA-Based Subspace Scanning Algorithm to Enhance Spatial Resolution of EEG/MEG Source Localization (뇌파/뇌자도 전류원 국지화의 공간분해능 향상을 위한 독립성분분석 기반의 부분공간 탐색 알고리즘)

  • Jung, Young-Jin;Kwon, Ki-Woon;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • In the present study, we proposed a new subspace scanning algorithm to enhance the spatial resolution of electroencephalography (EEG) and magnetoencephalography(MEG) source localization. Subspace scanning algorithms, represented by the multiple signal classification (MUSIC) algorithm and the first principal vector (FINE) algorithm, have been widely used to localize asynchronous multiple dipolar sources in human cerebral cortex. The conventional MUSIC algorithm used principal component analysis (PCA) to extract the noise vector subspace, thereby having difficulty in discriminating two or more closely-spaced cortical sources. The FINE algorithm addressed the problem by using only a part of the noise vector subspace, but there was no golden rule to determine the number of noise vectors. In the present work, we estimated a non-orthogonal signal vector set using independent component analysis (ICA) instead of using PCA and performed the source scanning process in the signal vector subspace, not in the noise vector subspace. Realistic 2D and 3D computer simulations, which compared the spatial resolutions of various algorithms under different noise levels, showed that the proposed ICA-MUSIC algorithm has the highest spatial resolution, suggesting that it can be a useful tool for practical EEG/MEG source localization.

Susceptibility of pentylenetetrazole-induced seizures in mice with Cereblon gene knockout

  • Jeon, Seung-Je;Ham, Jinsil;Park, Chul-Seung;Lee, Boreom
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.484-489
    • /
    • 2020
  • Epilepsy is a neurological disorder characterized by unpredictable seizures, which are bursts of electrical activity that temporarily affect the brain. Cereblon (CRBN), a DCAFs (DDB1 and CUL4-associated factors), is a well-established protein associated with human mental retardation. Being a substrate receptor of the cullin-RING E3 ubiquitin ligase (CRL) 4 complex, CRBN mediates ubiquitination of several substrates and conducts multiple biological processes. In the central nervous system, the large-conductance Ca2+-activated K+ (BKCa) channel, which is the substrate of CRBN, is an important regulator of epilepsy. Despite the functional role and importance of CRBN in the brain, direct injection of pentylenetetrazole (PTZ) to induce seizures in CRBN knock-out mice has not been challenged. In this study, we investigated the effect of PTZ in CRBN knock-out mice. Here, we demonstrate that, compared with WT mice, CRBN knock-out mice do not show the intensification of seizures by PTZ induction. Moreover, electroencephalography recordings were also performed in the brains of both WT and CRBN knockout mice to identify the absence of significant differences in the pattern of seizure activities. Consistently, immunoblot analysis for validating the protein level of the CRL4 complex containing CRBN (CRL4Crbn) in the mouse brain was carried out. Taken together, we found that the deficiency of CRBN does not affect PTZ-induced seizure.

Effects of Imagery Tennis Training on Cerebral Activity

  • Jung, Seokwon;Choi, Min-sun;Kim, Min-uk;An, Hye-jin;Shin, Min-gyeong;Kwon, Oh-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.46-50
    • /
    • 2015
  • The previous studies showed that the visual imagery activated the occipital and posterior inferior temporal area of the brain, and the damage to the occipital cortex impaired the visual mental imagery. We studied current-source distribution of electroencephalography (EEG) to observe neuronal activity during imagery tennis playing. Eleven healthy volunteers were enrolled. All volunteers were right-handed males and novices for tennis playing. The mean age of them was 24.9 years. The EEGs were recorded on the scalp electrodes located according to the International 10~20 System. The number of electrodes was 25 channels including subtemporal electrodes. The EEG recording session was 13 min including 5 segments: resting-I, scenery-slide show, resting-II, watching tennis-game video, and imagery-tennis playing. The recoding durations were 3, 2, 3, 2, and 3 min respectively. Five 'artifact free 3-sec segments' were selected in each segment of 'imagery-tennis playing' and 'resting-II'. We did the frequency domain analysis with the EEG segments using a distributed model of current-source analysis. The statistical-nonparametric maps (SnPMs) were obtained between the segments of 'imagery-tennis playing' and the segments of 'resting-II' (p<0.01). The significant change of current-source density was observed only in alpha-2 frequency band (10~12 Hz). The current-sourcedensity was increased in the hippocampus, parahippocampus, and occipital fusiform gyrus in the right cerebral hemisphere (p<0.01). Imaginary-tennis playing may activate the hippocampal-occipital alpha networks of nondominant hemisphere.

EEG Characteristic Analysis of Sleep Spindle and K-Complex in Obstructive Sleep Apnea

  • Kim, Min Soo;Jeong, Jong Hyeog;Cho, Yong Won;Cho, Young Chang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • This Paper Describes a Method for the Evaluation of Sleep Apnea, Namely, the Peak Signal-to-noise ratio (PSNR) of Wavelet Transformed Electroencephalography (EEG) Data. The Purpose of this Study was to Investigate EEG Properties with Regard to Differences between Sleep Spindles and K-complexes and to Characterize Obstructive Sleep Apnea According to Sleep Stage. We Examined Non-REM and REM Sleep in 20 Patients with OSA and Established a New Approach for Detecting Sleep Apnea Base on EEG Frequency Changes According to Sleep Stage During Sleep Apnea Events. For Frequency Bands Corresponding to A3 Decomposition with a Sampling Applied to the KC and the Sleep Spindle Signal. In this Paper, the KC and Sleep Spindle are Ccalculated using MSE and PSNR for 4 Types of Mother Wavelets. Wavelet Transform Coefficients Were Obtained Around Sleep Spindles in Order to Identify the Frequency Information that Changed During Obstructive Sleep Apnea. We also Investigated Whether Quantification Analysis of EEG During Sleep Apnea is Valuable for Analyzing Sleep Spindles and The K-complexes in Patients. First, Decomposition of the EEG Signal from Feature Data was Carried out using 4 Different Types of Wavelets, Namely, Daubechies 3, Symlet 4, Biorthogonal 2.8, and Coiflet 3. We Compared the PSNR Accuracy for Each Wavelet Function and Found that Mother Wavelets Daubechies 3 and Biorthogonal 2.8 Surpassed the other Wavelet Functions in Performance. We have Attempted to Improve the Computing Efficiency as it Selects the most Suitable Wavelet Function that can be used for Sleep Spindle, K-complex Signal Processing Efficiently and Accurate Decision with Lesser Computational Time.

Effects of Single Treatment of Anti-Dementia Drugs on Sleep-Wake Patterns in Rats

  • Jung, Ji-Young;Roh, Moo-Taek;Ko, Kyung-Kyun;Jang, Hwan-Soo;Lee, Seong-Ryong;Ha, Jeoung-Hee;Jang, Il-Sung;Lee, Ho-Won;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.231-236
    • /
    • 2012
  • We studied the effects of acetylcholinesterase inhibitors, donepezil and galantamine, and an N-methyl-D-aspartate (NMDA) receptor blocker, memantine, on sleep-wake architecture in rats. Screw electrodes were chronically implanted into the frontal and parietal cortex for the electroencephalography (EEG). EEG was recorded with a bio-potential amplifier for 8 h from 09:30 to 17:30. Vibration was recorded to monitor animal activity with a vibration measuring device. Sleep-wake states such as wake (W), slow-wave sleep (S) and paradoxical or rapid eye movement sleep (P), were scored every 10 sec by an experimenter. We measured mean episode duration and number of episode to determine which factor sleep disturbance was attributed to. Donepezil and memantine showed a significant increase in total W duration and decreases in total S and P duration and delta activity. Memantine showed increases in sleep latency and motor activity. Changes of S and P duration in memantine were attributed from changes of mean episode duration. Galantamine had little effect on sleep architecture. From these results, it is showed that galantamine may be an anti-dementia drug that does not cause sleep disturbances and memantine may be a drug that causes severe sleep disturbance.

Survey for Needs of Bio-Signal Devices for the Diagnosis, Assessment, or Analysis of Neurocognitive Disorder in Korean Society of Oriental Neuropsychiatry (인지 장애 진단·평가·분석을 위한 생체신호 장비 개발에 대한 수요조사: 한방신경정신과학회 회원들을 대상으로)

  • Choi, Yujin;Kim, Ji Hye;Kim, Kahye;Kim, Jaeuk
    • Journal of Oriental Neuropsychiatry
    • /
    • v.31 no.2
    • /
    • pp.89-99
    • /
    • 2020
  • Objectives: The purpose of this study was to identify the needs of bio-signal devices for the diagnosis, assessment, and analysis of neurocognitive disorder in Korean medicine (KM) hospitals and clinics. Methods: A questionnaire was developed to survey the current status of medical device use, and diagnosis and interventions for patients with cognitive disorders in KM hospitals and clinics. November 11~December 2, 2019, 114 responses (71.9% completed) were collected by internet-based questionnaires from the members of the Korean society of Oriental Neuropsychiatry. Results: The clinical requests were in the descending order of hematology analyzer, ultrasound imaging system, and electroencephalography among the 15 most commonly used devices of which research would support for their clinical usability. The biosignal-based devices showed the highest research demands for patients with mild cognitive impairment rather than more severe stages of cognitive impairment. Prevention rather than diagnosis, or several treatment regimens was the strongest clinical area of the KM for patients with neurodegenerative cognitive impairment. Many responded that five to 10 minutes of test duration and 20,000 won to 30,000 won of cost would be appropriated for a new device to be developed. Conclusions: There were strong demands for the development of bio-signal devices for neurocognitive disorders among the KM doctors. Specifically, it showed high needs for the technology that can be used in the prevention area of cognitive disorders. Additionally, new medical devices to assess cognitive functions and to obtain KM pattern-related information were the high needs.

A Study on Effects of Cyperus rotundus L. Essential Oil Inhalation on Stress Relaxation with HRV, EEG (향부자 정유 흡입이 스트레스 이완에 미치는 영향)

  • Uhm, Ji-Tae;Bae, Seon Young;Park, Kil-Soon;Kim, Kyoung-Shin
    • Journal of Haehwa Medicine
    • /
    • v.22 no.2
    • /
    • pp.81-92
    • /
    • 2014
  • Objective : The purpose of this study was to assess the effects of Cyperus rotundus L. essential oil on relaxation in highly stressed volunteers with heart rate variability(HRV) and electroencephalography(EEG). Methods : 11 highly stressed volunteers participated in this study. The volunteers were examined with HRV and EEG before and after inhalation of Cyperus rotundus L. essential oil. Results : After smelling Cyperus rotundus L. essential oil, mean RR(mean of RR intervals) was incresed significantly(p<0.01), mean HRV(mean of heart rate), HF(high frequency) were decreased significantly(p<0.01). norm LF(low frequency), LF/HF ratio were decreased significantly(p<0.05), norm HF(normalized high frequency) was increased significantly(p<0.05) on HRV. After smelling Cyperus rotundus L. essential oil, relative ${\theta}$ power was decreased significantly(p<0.05) at P3(left parietal) and relative ${\alpha}$ power was increased significantly(p<0.05) at Fp1(left prefrontal), Fp2(right prefrontal) and relative ${\beta}$ power was decreased significantly(p<0.05) at Fp1(left prefrontal) and relative ${\gamma}$ power was decreased significantly(p<0.05) at Fp1(left prefrontal) on EEG. Conclusions : This results show that inhalation of Cyperus rotundus L. essential oil effects on relaxation and decreasing stress.

Brain Alpha Rhythm Component in fMRI and EEG

  • Jeong Jeong-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.223-230
    • /
    • 2005
  • This paper presents a new approach to investigate spatial correlation between independent components of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging pure alpha activity, data from each modality were acquired separately under a 'three conditions' setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using a Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. Then, the sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that is specially designed to find the most probable dipole distribution minimizing the localization error in sense of LMSE. The resulting active dipoles were spatially transformed to 3D MRls of the subject and compared to fMRI alpha activity maps. A good spatial correlation was found in the spatial distribution of alpha sources derived independently from fMRI and EEG, suggesting the proposed method can localize the cortical areas responsible for generating alpha activity successfully in either fMRI or EEG. Finally a functional connectivity analysis was applied to show that alpha activity sources of both modalities were also functionally connected to each other, implying that they are involved in performing a common function: 'the generation of alpha rhythms'.

Characteristics of late-onset epilepsy and EEG findings in children with autism spectrum disorders

  • Lee, Ha-Neul;Kang, Hoon-Chul;Kim, Seung-Woo;Kim, Young-Key;Chung, Hee-Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • Purpose: To investigate the clinical characteristics of late-onset epilepsy combined with autism spectrum disorder (ASD), and the relationship between certain types of electroencephalography (EEG) abnormalities in ASD and associated neuropsychological problems. Methods: Thirty patients diagnosed with ASD in early childhood and later developed clinical seizures were reviewed retrospectively. First, the clinical characteristics, language and behavioral regression, and EEG findings of these late-onset epilepsy patients with ASD were investigated. The patients were then classified into 2 groups according to the severity of the EEG abnormalities in the background rhythm and paroxysmal discharges. In the severe group, EEG showed persistent asymmetry, slow and disorganized background rhythms, and continuous sharp and slow waves during slow sleep (CSWS). Results: Between the two groups, there was no statistically significant difference in mean age (P=0.259), age of epilepsy diagnosis (P=0.237), associated family history (P=0.074), and positive abnormal magnetic resonance image (MRI) findings (P=0.084). The severe EEG group tended to have more neuropsychological problems (P=0.074). The severe group statistically showed more electrographic seizures in EEG (P=0.000). Rett syndrome was correlated with more severe EEG abnormalities (P=0.002). Although formal cognitive function tests were not performed, the parents reported an improvement in neuropsychological function on the follow up checkup according to a parent's questionnaire. Conclusion: Although some ASD patients with late-onset epilepsy showed severe EEG abnormalities, including CSWS, they generally showed an improvement in EEG and clinical symptoms in the longterm follow up. In addition, severe EEG abnormalities tended to be related to the neuropsychological function.

Evaluation of Cranial Sacral Therapy (CST) Based Pillow on Sleep Induction Using the Electroencephalogram (EEG) (뇌파를 이용한 두개천골요법 기반 베개의 수면유도 효과 검증)

  • Kwon, Hyeok Chan;Phyo, Jung Bin;Park, Yong Gil;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.55-61
    • /
    • 2018
  • The purpose of this study was to investigate the effect of a pillow simulated with cranial sacral therapy (CST) on sleep induction using electroencephalography (EEG). This study included 12 voluntary participants divided into experimental group (CST group) and control group (Non-CST group) to observe EEG changes. The position of the electrode for EEG measurement consists of 8 channels electrodes (Fp1, Fp2, F3, F4, T3, T4, P3 and P4). In this study, we measured the fall asleep time, change of brain activity and sleep wave ratio using EEG wave (${\delta}$, ${\theta}$, ${\alpha}$, ${\beta}$ and ${\gamma}$). As a result, the mean fall asleep time of the experimental group was shorter than that of the control group significantly (p < 0.001). Also in comparison with the control group, both the delta (d) and theta (q) wave corresponding to the slow waves showed a larger increase and the alpha (a) wave showed a larger decrease significantly. The slow waves of experimental group showed a higher rate of significant increase than the control group (p < 0.001). Therefore this study showed that pillow based on CST had an effective in improving sleep induction and quality.