• 제목/요약/키워드: electrode life

검색결과 294건 처리시간 0.026초

리튬2차전지용 LiCoO2/LiNi1/3Mn1/3Co1/3O2계 복합정극의 전기화학적 특성 연구 (A Study on Electrochemical Characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 Mixed Cathode for Li Secondary Battery)

  • 김현수;김성일;엄승욱;김우성
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.64-70
    • /
    • 2006
  • In this study, the $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the content of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ increased in a mixed cathode, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability was deteriorated. On the contrary the rate capability of the cathode enhanced, but the reversible specific capacity and cycleability were deteriorated, increasing the content of $LiCoO_2$ in the mixed cathode. The cell of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ ($50:50 wt\%$) mixed cathode delivered a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell showed very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권1호
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

아크튜브내의 구성물 손실이 세라믹 메탈 핼라이드 램프의 특성에 미치는 영향분석 (Analysis of the Effect on the Performance of Ceramic Metal Halide Lamp by the Loss of Elements that have been Filled in Arc Tube)

  • 장혁진;양종경;박대희
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2446-2452
    • /
    • 2009
  • A Ceramic Metal-halide lamp is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The maximum visible efficacy of a Ceramic Metal Halide lamp, under the constant of a white light source, is predicted to be about 450lm/W. This is controlled principally by the chemical fill chosen for a particular lamp. Current these lamps achieve 130lm/W and these life time are the maximum 16,000[hr]. So factors of performance lower are necessary to improve lamp performance. In this paper, we analyzed factors of performance lower by accelerated deterioration test. The lamp was operated with short duration turn-on/turn-off procedure to enhance the effect due to electrode sputtering during lamp ignition. The tested lamp that was operated with a longer turn-on/off(20/20 minutes) showed blackening, changed distance between electrodes and lowered color rendering & color temperature by losses of Dy at 421.18nm, I at 511nm, T1 at 535nm and Na at 588nm compared with the new lamp.

페놀계 활성탄소섬유 전극과 수용성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성 (Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Aqueous Electrolytes)

  • 김종휘;안계혁;신경희;류민웅;김동국
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.814-821
    • /
    • 1999
  • 고비표면적의 활성탄소섬유(ACF: activated carbon fiber)를 분극성 전극으로 이용한 전기이중층 캐패시터(electric double layer capacitor)의 단위 cell test를 통하여, ACF의 비표면적, 세공의 크기 및 전기전도도가 캐패시터의 비축전용량에 커다란 영향을 미치고 있음을 확인할 수 있었고, 전해질은 $H^+$ 이온을 함유한 $H_2SO_4$이 가장 좋은 축전용량을 나타내었으나, 집전체 부식 등의 문제로 인하여, 실용화에 있어서는 우수한 충방전 거동을 나타낸 KOH계 전해질이 적당한 것으로 확인되었다. 분극성 전극으로 사용되는 ACF를 탄화 또는 후활성화 등이 후처리를 통하여 비축전용량을 급격히 증가시킬수 있었고, 3만회까지의 연속 충방전 실험에서 전기이중층 캐패시터는 2차전지에서는 찾아 볼 수 없는 매우 높은 충방전 효율과 긴 사용수명을 가지는 것을 확인할 수 있었다.

  • PDF

해수환경에서의 차축소재(RSA1) 부식특성 평가 (Evaluation of Corrosion Behavior of Railway Axle Material (RSA1) in Seawater)

  • 최두호;서승일
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5039-5044
    • /
    • 2015
  • 본 연구에서는 철도차량의 차축소재로 사용되는 RSA1 소재에 대한 해수 부식특성 평가를 하였다. 미국재료시험협회에서 규정한 ASTM-D1141에 해당하는 인공해수를 사용하여 3전극 셀 구조를 이용한 동전위 분극법과 임피던스 분광법을 바탕으로 산출된 부식전류밀도와 부식속도는 각각 $18.3{\mu}A/cm2$와 0.217 mm/yr이다. 이 결과에 따르면 철도차량의 일반적인 내구연한인 25년을 가정할 때 한 면에서의 차축부식량은 5mm정도로 예상된다. 패러데이법칙을 바탕으로 한 정전류 부식 가속화 시험을 통해 1,3,4년의 부식양을 인위적으로 형성하였고, 단면적 감소분을 고려하여 인장시험을 시행하였다. 탄성구간에서는 부식에 의한 기계적 특성변화가 관찰되지 않았지만 소재의 연성 값은 부식이 진행 될수록 감소되는 경향을 보였다. 본 연구 결과는 향후 해수환경에서 사용될 철도차량 설계 시 고려할 기초 부식데이타로 활용될 것으로 기대된다.

하수 방류수 살균소독을 위한 무전극 UV 램프의 제조 및 특성 (Manufacturing and Characteristics of the Electrodeless UV Lamp for Disinfection of the Sewage Effluent)

  • 신동호;이용택
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.570-575
    • /
    • 2005
  • 하수방류수 살균 소독에 이용되는 UV 램프를 기존의 전극용보다 효율을 높이고 수명이 긴 무 전극 UV 램프를 제작하고 그 성능을 알아보았다. 우선 활성물질을 변화시키면서 제조한 램프의 UV 강도 및 온도의 변화를 실험 하였다. 그 결과 활성물질이 Hg/In의 무게비 95/5로 만든 램프를 250 min간 운전한 결과 UV 강도 $300{\mu}W/cm^2$ 및 온도 $200{\sim}250^{\circ}C$로 가장 안정적인 결과를 나타내었다. 그러나 무전극 램프를 장시간 발광시켰을 경우 램프의 온도가 상승하기 때문에 이를 방지하기 위해 실제 하수처리공정에 적용할 수 있는 냉각이 가능한 이중관 형태로 제작하여 UV 강도와 온도 변화특성을 알아보았다. 또한 제작된 무전극 UV lamp를 하수 방류수의 살균 소독을 위하여 대장균(E-coli.)으로 실험한 결과에서도 99.9% 이상의 살균효율을 보였다.

효소 고정화 막을 이용한 Glucose의 정량 (Determination of Glucose Using Enzyme Immobilized Membrane)

  • 김임옥;곽경도;하윤식;권효식;서무룡
    • 대한화학회지
    • /
    • 제43권3호
    • /
    • pp.264-270
    • /
    • 1999
  • Immobilon-AV 친화성 막에 glucose oxidase[EC1.1.3.4](725units/mL)를 고정하여 백금 전극에 부착시킨 전극을 사용하여 glucose를 전류법으로 정량하였다. 이때 glucose가 gluconic acid로 산화될 때 전류를 +0.8V vs. Ag/AgC1에서 측정하였다. 효소 고정화된 막을 부착시킨 전극의 감응 특성은 다음과 같다. 직선 감응범위는 0.2mM에서 20mM이었으며, 정량한계는 10-3 mM이었다. 또한 감응 시간은 12초, 효소 고정화된 막의 최적 pH(CH3COONa/CH3COOH)는 5.5, 그리고 수명은 27일 이였다. 그리고 다른 생리 활성물질의 방해는 없었다. 또한 고구마를 이용하여 AOAC 방법으로 정량한 glucose 측정값을 비교해 본 결과, 그 상대오차는 0.1%였다.

  • PDF

도로터널용 전기집진시스템 개발 (Development of Road Tunnel Ventilation System with Electrostatic Precipitator)

  • 김종률;원종웅
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

리튬이온 커패시터의 음극도핑 및 전기화학특성 연구 (Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor)

  • 최성욱;박동준;황갑진;유철휘
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.

SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석 (Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation)

  • 신한신;김남훈;김성욱;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.490-494
    • /
    • 2020
  • Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.