• Title/Summary/Keyword: electrode length

Search Result 333, Processing Time 0.059 seconds

Modelling and Analysis of Electrodes Erosion Phenomena of $SF_6$ Arc in a Laval Nozzle

  • Lee, Byeong-Yoon;Liau, Vui Kien;Song, Ki-Dong;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.972-974
    • /
    • 2005
  • The present work deals with the theoretical study of the effects of copper vapours resulting from the erosion of the electrodes on the properties of a SF6 arc in a Laval nozzle. Computations have been done for a DC arc of 1000A with upstream gas pressure of 3.75MPa. The arc plasma is assumed to be in local thermodynamic equilibrium(LTE). The sheath and non-equilibrium region around the electrodes are not considered in this model. However, its effects on the energy flux into the electrodes are estimated from some experimental and theoretical data. The turbulence effects are calculated using the Prandtl mixing length model. A conservation equation for the copper vapour concentration is solved together with the governing equations for mass, momentum and energy of the gas mixture. Comparisons were made between the results with and without electrodes erosion. It has been found that the presence of copper vapours cools down the arc temperature due to the combined effects of increased radiation and increased electrical conductivity. The copper vapour distribution is very sensitive to the turbulent parameter. The erosion of upstream electrode(cathode) has larger effects on the arc compared to the downstream electrode(anode) as the copper vapour eroded from the anode cannot diffuse against the high-speed axial flow.

  • PDF

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK;LEE, BO AN;WON, WOO YOUN;LEE, YEON GUN;JERNG, DONG WOOK;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.804-813
    • /
    • 2015
  • The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

Flow Signal Characteristics of Small Scale Electromagnetic Flowmeter in Low Conductivity Fluid Measurement (저전도율 유체 측정에서 소형 전자기유량계의 신호 특성)

  • Lim, Ki Won;Jung, Sung Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2016
  • In order to scrutinize the fluid conductivity effects on the electromagnetic flowmeter(EMF) characteristics, a small scale EMF was designed and fabricated. The measuring tube has a $3mm{\times}4mm$ rectangular cross-section, 9 mm length, and a $2mm{\times}3mm$ plate electrode and a ${\Phi}1.5mm$ point electrode. The design parameters, such as the magnetizing frequency and the number of coil turns, and the diameter were optimized. The EMF was tested with a gravimetric calibrator and showed good linearity in the range of 0 to $1.17{\times}10^{-5}m^3/s$. The fluid conductivity was varied between 3 and $11{\mu}S/cm$, and the magnitude of the flow signal was proportional to the fluid conductivity and the wetted area of the electrode. The design information and the test results provide flow measurement techniques for very low flowrate.

Fabrication of Transparent Electrode Film for Organic Photovoltaic using Ag grid and Conductive Polymer (Ag grid와 전도성 고분자를 이용한 인쇄기반 OPV용 투명전극 형성)

  • Yu, Jongsu;Kim, Jungsu;Yoon, Sungman;Kim, Dongsoo;Kim, Dojin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.116.1-116.1
    • /
    • 2011
  • Materials with a combination of high electrical conductivity and optical transparency are important components of many electronic and optoelectronic devices such as liquid crystal displays, solar cells, and light emitting diodes. In this study, to fabricate a low-resistance and high optical transparent electrode film for organic photovoltaic, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of thermal roll imprinted (TRI) poly-carbonate (PC) patterned films, the manufacture of high-conductivity and low-resistance Ag paste which was filled into patterned PC film using a doctor blade process and then coated with a thin film layer of conductive polymer by a spin coating process. As a result of these imprinting processes the PC films obtained a line width of $10{\pm}0.5{\mu}m$, a channel length of $500{\pm}2{\mu}m$, and a pattern depth of $7.34{\pm}0.5{\mu}m$. After the Ag paste was used to fill part of the patterned film with conductive polymer coating, the following parameters were obtained: a sheet resistance of $9.65{\Omega}$/sq, optical transparency values were 83.69 % at a wavelength of 550 nm.

  • PDF

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.

Light Emission and Plasma Property in the External Electrode Fluorescent Lamps (외부전극 형광램프의 발광 및 플라즈마 특성)

  • Ahn, S.;Lee, M.;Jeong, J.;Kim, J.;Yoo, D.;Koo, J.;Kang, J.;Hong, B.;Choi, E.;Cho, G.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.172-180
    • /
    • 2007
  • A new diagnostics of plasma electron temperature and plasma density is introduced with the observation of the light emission along the tube of external electrode fluorescent lamps. With two different methods operating an external electrode fluorescent lamp of outer diameter 4.0 mm and length 860 mm for the back-light source of 37-inch LCD-TVs, the lighting modes and the plasma properties are investigated. In the center balance operation, the light-emission propagates simultaneously from both sides of the high voltage electrodes to the center of the lamp, while in conventional operation the light-emission propagates from the one end of a high voltage to the other ground electrode. In the operation value of luminance $10,000{\sim}15,000cd/m^2$, the electron plasma thermal energy $(kT_e)$ is about $1.3{\sim}2.7eV$ with the electron density $(n_e)$ is about $(1.6{\sim}3.6){\times}10^{16}m^{-3}$.

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.

Characteristics of Electrode Potential and AC Impendance of Perchlorate Ion-Selective Electrodes Based on Quaternary Phosphonium Salts in PVC Membranes (제4급 인산염을 이용한 과염소산 이온선택성 PVC막 전극의 전극전위와 AC 임피던스 특성)

  • 안형환
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.230-239
    • /
    • 1999
  • Perchlorate ion-selective electrodes in PVC membranes that respond linearly to concentration 106 M were developed by incorporating the quaternary phosphonium salts as a canier. The effects of the chemical structure, the contents of canier, the kind of plasticizer and the membrane thickness on electrode characteristics such as the electrode slope, the linear respone range and the detection limit were studied. With this results, the detectable pH range, selectivity coefficients and AC impedance characteristics were compared and investigated. The perchlorate ion substituents of the quaternary phosphonium salts like tetraoctylphosphonium perchlorate (TOPP) , tetraphenylphosphonium perchlorate(TPPP), and tetrabutylphosphonium perchlorate(TBPP) as a canier were used. The electrode characteristics were better in the ascending order of TBPP < TPPP < TOPP, with the increase of carbon chain length of the alkyl group. Dioctylsebacate(OOS) was best as a plasticizer, the canier contents were better with 11.76 wt% and the optimum membrane thickness was 0.19 mm. Under the above condition, the electrode slope was 56.58 mV/$^P{ClO}_4$,the linear response range was $10^{-1}$\times$10^{-6}$ M, the detection limit was 9.66 x $10^{-7}$ M. The performance of electrode was better than Orion electrode. The electrode potential was stable within the pH range from 3 to 11. The order of the selectivity coefficients for the perchlorate ion was sol < F < Br < 1. With the result of impedance spectrum, it was found that the equivalent circuit for the electrode could be expressed by a series combination of solution resistance, parallel circuit consisting of the double layer capacitance and bulk resistance and Warburg impedance. And solution resistance was almost not appeared and Warburg impedance was highly appeared by diffusion. Then Warburg coefficient was 1.32$\times$$10^74 $\Omega$ $\cdot$ ${cm}^2/s^{1/2}$.

  • PDF

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF