• Title/Summary/Keyword: electrode impedance

Search Result 686, Processing Time 0.026 seconds

Current characteristics of Cu/NaCl electrolyte/Zn electrochemical cell (구리/NaCl 전해질/아연 전기화학전지의 전류특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1626-1631
    • /
    • 2010
  • The characteristics of electric current for the voltaic cell are important for electric power applications. In this paper, an electrical equivalent model consist of three resisters and a capacitance for the Cu/NaCl solution/Zn electrochemical cell is proposed. The capacitance which exists in the Zn electrode/electrolytic interface increased according to Zn electrode area, but cannot affect almost in electric current. Complex impedance plot was used to analysis the interface effect for Zn/electrolyte. This result shows that the interface is similar with the electric transmission line. The short current measurements were conducted to investigate the effects of hydrogen peroxide, the watery sulfuric acid and NaCl aqueous solution. As the hydrogen peroxide increased, the electric current increased because the hydrogen gas being converted with the water. Also electric current increased significantly with increase of the hydrogen ion with the watery sulfuric acid and increased with increase of $Na^+$ ion and $Cl^-$ion in the NaCl electrolyte.

A Study on the Cycle Life Improvement of V-Ti-Ni(V-rich) Alloy as a Negative Electrode for Ni/MH Rechargeable Battery (Ni/MH 2차전지의 음극으로써 V-Ti-Ni(V-rich) 수소저장합금의 전극수명 향상에 관한 연구)

  • Kim, Ju-Wan;Lee, Seong-Man;Lee, Jae-Yeong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • The discharge capacity of V-Ti-Ni(V-rich) metal hydride electrode during the charge-discharge cycling was investigated in KOH electrolyte. All electrodes were degraded within 25 cycles. To investigate the cause of the degradation phenomena impedance measurements were performed by using E.I.S(electrochemical impedance spectroscopy). The surfaces of the degraded electrodes were examined by Auger electron spectroscopy (AES). It was observed that all electrodes were covered with oxygen from the surface to the bulk, titanium was enriched near surface, and vanadium was dissolved from the surface to the bulk.

  • PDF

AC & DC Electrical Characterization of PTC $BaTiO_3$ and Electrodes (PTC $BaTiO_3$ 및 전극의 직류 및 교류 특성)

  • 전표용;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 1991
  • 0.2 mo1% La doped BaTiO3 samples were prepared by a wet chemical process (Pechini process) and electrical conductivity were measured from annealing temperatures(800-110$0^{\circ}C$) to room temperature continuously. 2 probe I-V characteristics showed that Pt electrodes were non-ohmic below about 80$0^{\circ}C$ for Ladoped sample. I-V curves showed varistor behavior and breakdown voltages showed PTC-like behavior. AC complex impedance of 0.2 La and 0.05 Mn mo1% doped BaTiO3 samples with three different electrodes (electroless Ni, Pt, Ag electrodes) were measured with temperature variation. Complex impedance plots showed that the samples with electroless Ni electrodes have negligible electrode resistance. Samples with Ag or Pt paste electrodes showed large electrode resistance. PTC effect, which is defined as the ratio of maximum resistance to minimum resistance, was found to be less than 10 for 0.2 mo1% La doped dense sample however greater than 105 with codoping of 0.05 mo1% Mn and 0.2 mol% La.

  • PDF

Effects of the GaAs Semiconductor Particles on Electrophysical Phenomena at the Pt Electrode Interfaces (Pt 전극 계면의 전기물리적 현상에 관한 GaAs 반도체 입자효과)

  • Jang Ho Chun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.67-74
    • /
    • 1994
  • Effects of the GaAs semiconductor particles on electrophysical phenomena at the Pt electrode/10S0-3TM KCl aqueous electrolyte interfaces have been studied using voltammetric time based and electrochemical impedance techniques. The anodic decomposition effect f the GaAs semiconductor particles on electrophysical phenomena was significantly observed during the positive potential scan (0 to 1.0 V vs. SCE). On the other hand, the cathodic decomposition effect of the GaAs semiconductor particles was negligible during thenegative potential scan (0 to -1.0 V vs. SCE). The GaAs semiconductor particles act as current activators or mediators during the anodic process and act as charge screens during the cathodic process. The electrolyte resistance and related impedance was increased due to the presence of the GaAs semiconductor particles. The anodic decomposition effect of the GaAs semiconductor particles can directly be applied to activate the hydrogen evolution.

  • PDF

Electrode of Low Impedance by Polypyrrole Addition for Supercapacitor (폴리피롤 첨가에 의한 supercapacitor용 저 임피던스 전극)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.343-350
    • /
    • 2003
  • The best Ppy weight ratio was 7 wt% and the optimal electrode composition ratio was 78 : 17 : 5 wt.% of (MSP-20 : BP-20 =1 : 1), (Super P : Ppy =10 : 7) and P(VdF-co-HFP). Implantation of Ppy as the conducting agents have led to superior electrochemical characteristics because of the low of internal resistance and faradaic capacitance. The result of unit cell with Ppy 7 wt% were as follows: 28.02 Fig of specific capacitance, 1.34 Ω of DC-ESR and 0.36 Ω of AC-ESR. Unit cell showed a good stability up to 200 charge-discharge cycles, retaining 82% of their original capacity at 200 cycles. From the analysis of impedance, the electrodes with Ppy 7 wt% showed low ESR, low charge transfer resistance and quick reaction rate. It was inferred that quick charge-discharge was possible. As compared with the specific capacitance (rectangular shape) of CV, it was also concluded that the specific capacitance originated from thecompound phenomena of the faradaic capacitance by oxidation and reduction of Ppy and the non-faradaic capacitance by adsorption-desorption of activated carbon.

  • PDF

Fabrication of Micro-Channel with Embedded Electrode for Impedance Measurement (임피던스 측정용 측벽전극 내장형 마이크로채널 제작)

  • Kang, Gil-Hwan;Roh, Yong-Rae;Kim, Gyu-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.11-16
    • /
    • 2006
  • A new method to fabricate metal electrodes on side wall of the microchannel is presented. Electrical signal can be measured by the metal electrodes on channel side wall when microparticles pass through a polymer microchannel. 3 dimensional metal electrodes on channel side wall could be fabricated by local deposition of metal through a shadowmask and inclined evaporation. The polymer microchannel with side wall electrodes could be precisely aligned onto metal contact patterns on pyrex glass. The impedance measurement test showed possibility of electrical signal measurement using the fabricated device.

  • PDF

Micro-electrochemical Characteristics of Sensitized 304 Stainless steel Using Micro-droplet cell Techniques (마이크로 드로플릿 셀 기법을 이용한 예민화 된 304 스테인리스강의 미세전기화학 특성)

  • Kim, Kyu-Seop;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.300-309
    • /
    • 2010
  • The influences of sensitization on localized corrosion resistance of 304 stainless steel, were investigated, using micro-dropletcell techniques. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local current with the potentiodynamic polarization, linear polarization and a.c. impedance. Micro-electrochemical tests were carried out inside of the grain and on grain boundaries separately. It was found that sensitization decreased the pitting potential, increasing corrosion current density around grain boundaries. Galvanic current density was also measured between grain and grain boundaries.

Characteristics of Anode Electrode According to Ni Content for Solid Oxide Fuel Cell (고체전해질형 연료전지의 Ni 함량에 따른 연료극 특성)

  • 김귀열;엄승욱;문성인
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.528-532
    • /
    • 1997
  • The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for SOFC, by the way, Ni-YSZ materials are used as anode of SOFC widely. So in this experiments, we investigated the optimum content of Ni, by testing expansion coefficient, impedance characteristics, overvoltage. As a result, the performance of Ni-YSZ anode(40vol%) was better excellent than the others.

  • PDF

Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling ($TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화)

  • Kim, J.U.;Gu, H.B.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF

Impedance Characteristics of the Gel Type VRLA Battery at the Various State-of-Charge (겔식 납축 전지의 충전상태에 따른 임피던스 특성 연구)

  • An, Sang-Yong;Jeong, Euh-Duck;Won, Mi-Sook;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2008
  • In the present study, impedance spectrometry has been used for predicting State-of-Charge (SoC) of gel type, Valve Regulated Lead Acid (VRLA), battery. The impedance measurements of VRLA battery (2V/1.2 Ah) at various SoC were made over the frequency range from 100kHz to 10mHz with an amplitude 10 mV. The impedance parameters have been evaluated by the analysis of the data using an equivalent circuit and a complex non-linear least squares (CNLS) fitting method. The charge transfer resistance values and double layer capacitance values of the positive electrode were higher than those of the negative electrode. The gel resistance values increased with decreasing in SoC. This indicates that the gel resistance is an important parameter for predicting SoC of VRLA battery.