• Title/Summary/Keyword: electrode area

Search Result 973, Processing Time 0.027 seconds

Fabrication of GHz-Band FBAR with AIN Film on Mo/SiO2/Si(100) Using MOCVD (Mo/SiO2/Si(100)기판 위에 MOCVD법으로 성장시킨 AIN박막이용 GHz대역의 FBAR제작에 관한 연구)

  • Yang, Chung-Mo;Kim, Seong-Kweon;Cha, Jae-Sang;Park, Ku-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2006
  • In this paper, it is reported that film-bulk-acoustic resonator with high c-axis oriented AIN film on $Mo/SiO_2/Si(100)$ using metal-organic-chemical-vapor deposition was fabricated. The resonant frequency and anti-resonant frequency of the fabricated resonator were observed with 3.189[GHz] and 3.224[GHz], respectively. The quality factor and the effective electromechanical coupling coefficient(${k_{eff}}^2$) were measured with 24.7 and 2.65[%], respectively. The conditions of AIN deposition were substrate temperature of $950[^{\circ}C]$, pressure of 20Torr, and V-III ratio of 25000. A high c-axis oriented AIN film with $4{\times}10^{-5}[\Omega{cm}]$ resistivity of Mo bottom electrode and $4[^{\circ}]$ of AIN(0002) full-width at half-maximum(FWHM) on $Mo/SiO_2/Si(100)$ was grown successfully. The FWHM value of deposited AIN film is useful for the RF band pass filter specification for GHz-band wireless local area network.

Analysis of Parameter Characteristic of Parallel Electrodes Conduction-cooled Film Capacitor for HF-LC Resonance (고주파 LC 공진을 위한 병렬전극 전도냉각 필름커패시터의 파라메타 특성 분석)

  • Won, Seo-Yeon;Lee, Kyeong-Jin;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.155-166
    • /
    • 2016
  • It is important to configure capacitance(C) of the capacitor and the induction coefficient(L) of the work coil on the resonant circuit design stage in order to induce heating on the object by a precise and constant frequency components in the electromagnetic induction heating equipment. Work coil conducts a direct induction heating according to heating point and area of the object which has a fixed heat factor so that work coil is designed to has fixed value. On the other hands, Capacitor should be designed to be changed in order to be the higher the utilization of the entire equipment. It is extracted the samples by variation of single electrode capacity from the selection stage of raw materials for capacity to the stage of process design for output of the high frequency LC resonance of 700kHz on 1000 VAC maximum voltage and current to $200I_{MAX}$. It is suggested fundamental experiment results in order to prove relation for the optimal design of HF-LC resonance conduction-cooled capacitor based on the response of frequency characteristics and results of output parameters according to variation of the capacitance size.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Response Characteristics of the PZT Transducers during Glass Capillary Breakage (유리모세관 파괴시 방출된 탄성파에 대한 PZT 변환기의 응답특성)

  • Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 1998
  • The response characteristics of the PZT transducers during glass capillary breakage were studied at the epicenter of the glass plate. The PZT transducers had been made by using EC-65 PZT ceramics(supplied by Edo co.) with a constant area and a various thickness. The theoretical displacement and velocity at the epicenter of glass plate with an air boundary condition were calculated by assuming the point load of 1N force strength and a rise time of 280 ns with a ramped functional dependence, and the 1st pulses of the PZT transducer may be considered as the vertical velocity incident on the electrode of the PZT ceramic. The responses of the PZT transducer may be depended on the thickness mode of the PZT ceramic below 0.33 in the ratio of the thickness to the diameter of PZT ceramic, but the reponse of the PZT transducer may be depended on the other modes of PZT transducer in the addition of the thickness mode of the PZT ceramic above 0.33. The full time of half maximum at the 1st pulse was nearly 280 ns without a variation of applied breakage load and the resonant frequency of the PZT transducer, and then may be considered as the rise time of a AE source. The maximum amplitude of the 1st pulse depended on the incident vertical velocity and capacitance of the PZT transducer. Therefore, the full time of half maximum and maximum amplitude of the 1st pulse may be considered as the rise time and strength of acoustic emission source respectively.

  • PDF

Interface Control to get Higher Efficiency in a-Si:H Solar Cell

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.193-193
    • /
    • 2012
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is the most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. Single-chamber PECVD system for a-Si:H solar cell manufacturing has the advantage of lower initial investment and maintenance cost for the equipment. However, in single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of single-chamber PECVD system. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. In order to remove the deposited B inside of the plasma chamber during p-layer deposition, a high RF power was applied right after p-layer deposition with SiH4 gas off, which is then followed by i-layer, n-layer, and Ag top-electrode deposition without vacuum break. In addition to the p-i interface control, various interface control techniques such as FTO-glass pre-annealing in O2 environment to further reduce sheet resistance of FTO-glass, thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, and hydrogen plasma treatment prior to n-layer deposition, etc. were developed. The best initial solar cell efficiency using single-chamber PECVD system of 10.5% for test cell area of 0.2 $cm^2$ could be achieved by adopting various interface control methods.

  • PDF

A Study on Catalytic Activity of Oxygen Reduction Reaction and Performance of PEMFC using Pt/C Synthesized by Modified Polyol (수정된 폴리올법으로 합성된 Pt/C를 이용한 산소환원반응성 및 고분자전해질 연료전지 성능 연구)

  • Yang, Jongwon;Chu, Cheonho;Kwon, Yongchai
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.157-162
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of carbon supported Pt (Pt/C) that is synthesized by polyol method. With the Polyol_Pt/C that is adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with commercial Pt/C(Johnson Mattey) catalyst. Their electrochemically active surface (EAS) area are measured by cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and (ii) PEMFC single cell tests are used. The CV measurement demonstrate EAS of Polyol_Pt/C is compared with commercial JM_Pt/C. In case of Polyol_Pt/C, its half-wave potential, kinetic current density are excellent. Based on data obtained by half-cell test, when PEMFC single cell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing Polyol_Pt/C are better than those employing commercial Pt/C. Conclusively, Polyol_Pt/C synthesized by modified polyol process shows better ORR catalytic activity and PEMFC performance than other catalysts.

A Study on the Development of Remotely CP Potential Measuring Method by using Vehicle (차량을 이용한 원격전위 측정방법 개발에 관한 연구)

  • Ryou, Young-Don;Jo, Young-Do;Kim, Jin-Jun;Seo, Min-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.64-71
    • /
    • 2016
  • According to the urban gas business law, electrical corrosion prevention measures shall be installed to the buried gas pipelines and the pipe-to-soil potentials should be measured at the test box at least once a year. Most of the test boxes installed in urban area are usually located on the road where the vehicle travels, therefore, it is difficult to measure the CP potentials at the test boxes. That is, we need traffic control when carrying out the measurement of the CP potentials on daytime when the traffic is heavy, or we have to measure the potentials in the late night when the traffic is light. To solve these difficulties, we have studied remotely CP potential measuring method by using the patrol car. We have installed solid reference electrodes and data loggers under the test boxes on the site and received the CP potentials from the data loggers when the vehicle moves. It was difficult to send and receive the data because the data logger was located under the ground. We have applied 3 different method including 2 antenna systems to achieve best effective way in receiving the data. We have found the remote CP measuring method by using a car can save more 20 times of measuring time than conventional measuring methods.

A Study on Performance of Indirect-contact Driven-right-leg Ground in Indirect-contact ECG Measurement (간접접촉 심전도 측정에서의 간접접촉 오른발 구동 접지 성능에 대한 연구)

  • Lim, Yong-Gyu;Kim, Ko-Keun;Park, Kwang-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.280-287
    • /
    • 2008
  • For the reduction of common-mode noise level in Indirect-contact ECG (IDC-ECG) measurement a driven-right-leg grounding method was a lied to the IDC-ECG. Because the IDC-ECG does not require any direct contact between the electrodes and the human skin. it is adequate for un-constraining long-term ECG measurement at home and its various applications are now under development. However, larger 60 Hz noise induced by power line a ears in IDC-BCG than in conventional ECG, that is a restriction of IDC-ECG a application. In this study, the driven-right-leg ground which has been used in conventional direct-contact ECG, was adapted to the IDC-ECG measurement by feedback of the inversion of amplified common-mode noise to the body through the conductive fertile laid on the chair seat By this study, indirect-contact driven-right-leg ground was developed and it was shown to work stably. It was shown that the level of 60Hz power line noise was reduced to about -40 dB when the driven-right-leg gain was 1000. This study shows that we can extend the upper limit of the frequency band of IDC-ECG to 100Hz from 30Hz which is conventional upper limit in IDC-ECG, and we can raise the ground impedance between the body and conductive textile. So it is expected that the application area of the IDC-ECG will be extended by the results of this study.

  • PDF

Change of Electrochemical Characteristics Due to the Fe Doping in Lithium Manganese Oxide Electrode

  • Ju Jeh Beck;Kang Tae Young;Cho Sung Jin;Sohn Tae Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Sol-gel method which provides better electrochemical and physiochemical properties compared to the solid-state method was used to synthesize the material of $LiFe_yMn_{2-y}O_4$. Fe was substituted to increase the structural stability so that the effects of the substitution amount and sintering temperature were analyzed. XRD was used for the structural analysis of produced material, which in turn, showed the same cubic spinel structure as $LiMn_2O_4$ despite the substitution of $Fe^{3+}$. During the synthesis of $LiFe_yMn_{2-y}O_4$, as the sintering temperature and the doping amount of Fe(y=0.05, 0.1, 0.2)were increased, grain growth proceeded which in turn, showed a high crystalline and a large grain size, certain morphology with narrow specific surface area and large pore volume distribution was observed. In order to examine the ability for the practical use of the battery, charge-discharge tests were undertaken. When the substitution amount of $Fe^{3+}\;into\;LiMn_2O_4$ increased, the initial discharge capacity showed a tendency to decrease within the region of $3.0\~4.2V$ but when charge-discharge processes were repeated, other capacity maintenance properties turned out to be outstanding. In addition, when the sintering temperature was $800\~850^{\circ}C$, the initial capacity was small but showed very stable cycle performance. According to EVS(electrochemical voltage spectroscopy) test, $LiFe_yMn_{2-y}O_4(y=0,\;0.05,\;0.1,\;0.2)$ showed two plateau region and the typical peaks of manganese spinel structure when the substitution amount of $Fe^{3+}$ increased, the peak value at about 4.15V during the charge-discharge process showed a tendency to decrease. From the previous results, the local distortion due to the biphase within the region near 4.15V during the lithium extraction gave a phase transition to a more suitable single phase. When the transition was derived, the discharge capacity decreased. However the cycle performance showed an outstanding result.

Studies on the Transport of Acetic Acid by Electrodialysis (전기투석에 의한 초산의 이동특성 연구)

  • 최동민;구윤모
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.360-366
    • /
    • 1996
  • Electrodialysis of acetic acid was studied to find out the trend of the transport of organic acids through ultrafiltration and ion exchange membranes. The net transport rate of acetic acid was determined from the electro-migration velocity relative to the electro-osmotic flow rate through the membrane. Electro-osmosis flows through ultrafiltration membranes were from the anodic side to the cathodic side in the presence of electric field. The surface of ultrafiltration membrane was measured by the electro-osmotic flow to be charged negatively. Different transport behaviors of acetic acid were found with the ultrafiltration membranes of different materials. In general, regenerated cellulose membranes (YM series) were more effective than polysulfone membranes (PM series) for the transport of acetic acid. The transport of acetic acid was affected by electric strength, distance between the electrodes, surface area of electrode, temperature, and pore size of membrane. The transport rate through the ion exchange membrane was 1.5 to 3 times of those through the ultrafiltration membranes at the constant current of 150 mA in the experimental ranges. The transport rate of acetic acid through the ion exchange membrane increased by 10% with a pulse electric field of 10 sec/hr.

  • PDF