• Title/Summary/Keyword: electrochemical parameters

Search Result 339, Processing Time 0.033 seconds

Electrochemical and Optical Studies on the Passivation of Nickel (니켈의 부동화에 관한 전기화학적 및 광학적 연구)

  • Dong Jin Kim;Woon-Kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.369-377
    • /
    • 1982
  • The technique of combined-measurement of reflectance and ellipsometric parameters was used for studying the anodic film formed on nickel surface in basic solutions. An ellipsometer was automated for transient measurements by way of modulating the plane-polarized light with the Faraday effect. Surface film was formed electrochemically by applying a potential step from the reduction potential range to the passivation range on a polished, high-purity, polycrystalline nickel specimen. From that instant, the changes in the reflectance(r) and the ellipsometric parameters(${\Delta},{\Psi}$) of the surface film were recorded by the automatic ellipsometer. Three exact simultaneous equations including these optical signals, ${\Delta},{\Psi}$ and r were solved numerically with a computer in order to determine the optical properties, n, k, and the thickness, ${\tau}$, of the surface film. From the computed results which showed dependence on pH and time, it was found that passivation of nickel can be effectively attained by surface film thinner than $15{\AA}$ and this passivation film has a small optical absorption coefficient. It seemed that a high pH environment enhances the rate of passivation and is favorable for a denser structure of the surface film. The experimental evidence is in accordance with the hypothesis that the composition of the passive film can be approximated by $Ni(OH)_2$ in the early stage of passivation and that as time passes the composition changes partially toward that of NiO through dehydration.

  • PDF

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles (전기 자동차용 리튬이온전지 개발을 위한 수치해석)

  • You, Suk-Beom;Jung, Joo-Sik;Cheong, Kyeong-Beom;Go, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.649-656
    • /
    • 2011
  • A model for the numerical simulation of lithium-ion batteries (LIBs) is developed for use in battery cell design, with a view to improving the performances of such batteries. The model uses Newman-type electrochemical and transfer $theories^{(1,2)}$ to describe the behavior of the lithium-ion cell, together with the Levenberg-Marquardt optimization scheme to estimate the performance or design parameters in nonlinear problems. The mathematical model can provide an insight into the mechanism of LIB behavior during the charging/discharging process, and can therefore help to predict cell performance. Furthermore, by means of least-squares fitting to experimental discharge curves measured at room temperature, we were able to obtain the values of transport and kinetic parameters that are usually difficult to measure. By comparing the calculated data with the life-test discharge curves (SB LiMotive cell), we found that the capacity fade is strongly dependent on the decrease in the reaction area of active materials in the anode and cathode, as well as on the electrolyte diffusivity.

Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis (다상유동 전산모사를 통한 공학 규모의 cathode processor의 성능평가)

  • Yoo, Bung Uk;Park, Sung Bin;Kwon, Sang Woon;Kim, Jeong Guck;Lee, Han Soo;Kim, In Tae;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.7-17
    • /
    • 2014
  • Molten salt electrorefining process achieves uranium deposits at cathode using an electrochemical processing of spent nuclear fuel. In order to recover pure uranium from cathode deposit containing about 30wt% salt, the adhered salt should be removed by cathode process (CP). The CP has been regarded as one of the bottle-neck of the pyroprocess as the large amount of uranium is treated in this step and the operation parameters are crucial to determine the final purity of the product. Currently, related research activities are mainly based on experiments consequently it is hard to observe processing variables such as temperature, pressure and salt gas behavior during the operation of the cathode process. Hence, in this study operation procedure of cathode process is numerically described by using appropriate mathematical model. The key parameters of this research are the amount of evaporation at the distillation part, diffusion coefficient of gas phase salt in cathode processor and phase change rate at condensation part. Each of these conditions were composed by Hertz-Langmuir equation, Chapman-Enskog theory, and interphase mass flow application in ANSYS-CFX. And physical properties of salt were taken from the data base in HSC Chemistry. In this study, calculation results on the salt gas behavior and optimal operating condition are discussed. The numerical analysis results could be used to closely understand the physical phenomenon during CP and for further scale up to commercial level.

Bioequivalence of Burophil Capsule to Surfolase Capsule (Acebrophylline 100 mg) (설포라제 캡슐(아세브로필린 100 mg)에 대한 부로필 캡슐의 생물학적 동등성)

  • Cho, Hea-Young;Park, Eun-Ja;Kang, Hyun-Ah;Kim, Se-Mi;Park, Chan-Ho;Oh, In-Joon;Lim, Dong-Koo;Lee, Myung-Hee;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • Acebrophylline is a compound produced by salifying ambroxol with theophylline-7 -acetic acid. After acebrophylline administration, the salt splits into these two components which feature a peculiar pharmacokinetic behavior, an adequate ambroxol and a low theophylline-7-acetic acid serum levels. The purpose of the present study was to evaluate the bioequivalence of two acebrophylline capsules, Surfolase (Hyundai Pharm. lnd. Co., Ltd.) and Burophil (Kuhnil Pharm. Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of ambroxol from the two acebrophylline formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty eight healthy male subjects, $23.25{\pm}1.43$ years in age and $64.82{\pm}6.77$ kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After two capsules containing 100 mg as acebrophylline were orally administered, blood was taken at predetermined time intervals and the concentrations of ambroxol in serum were determined using HPLC with electrochemical detector (ECD). The dissolution profiles of two formulations were similar at all dissolution media. In addition, the pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug Surfolase, were -1.64, -3.33 and -0.92% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 $(e.g., \;log\;0.93{\sim}log\;1.05\;and\;log\;0.88{\sim}log\;1.05$ for $AUC_t$, and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Burophil capsule was bioequivalent to Surfolase capsule.

Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants (Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정)

  • Jeon, Sang-K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • The phase-shift method and correlation constants for studying a linear relationship between the behavior ($-{\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and that (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}\theta{\geq}0$) have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) at noble metal/aqueous electrolyte interfaces. At an Ir/0.1 M KOH aqueous electrolyte interface, the Langmuir and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=3.3{\times}10^{-4}\;mol^{-1}$ for the Langmuir and $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$ for the Temkin adsorption isotherm), interaction parameter (g = 4.6 for the Temkin adsorption isotherm), and standard free energies (${\Delta}G_{ads}^0=19.9kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-4}\;mol^{-1}$ and $16.5<{\Delta}G_{\theta}^0<23.3\;kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}\;and\;0.2<\theta<0.8$) of H for the cathodic $H_2$ evolution reaction are determined using the phase-shift method and correlation constants. The inhomogeneous and lateral interaction effects on the adsorption of H are negligible. At the intermediate values of ${\theta},\;i.e,\;0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms (${\theta}\;vs.\;E$) and related electrode kinetic and thermodynamic parameters(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$).

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Synthesis and Properties of 1,4-Diboracyclohexene-2 Derivatives (1,4-Dibora-2-cyclohexene 유도체들의 합성과 그 성질)

  • Uhm, Jae-Kook;Hu D.;Zenneek U.;Pritzkow H.;Siebert W.
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.490-497
    • /
    • 1990
  • Two synthetic routes for the 1,4-diboracyclohexene-2 ring 8 have been developed. Method i) starts with 1,2-bis(dichloroaluminyl)ethane, in which the AlCl$_2$ group is replaced by BCl$_2$. Exchange of the chlorine with BI$_3$ in 1,2-bis-(dichloroboryl)ethane yields the corresponding iodo compound, which reacts with the alkynes to heterocycles 8a, b in good yield. In method ii) B$_2$Cl$_4$ is added to alkenes, replacement of chlorine with BI$_3$ yields the bis(diiodoboryl)ethane derivatives which undergo redox reactions with alkynes to give 8c, d. The diiodo derivative 8a forms the pyridine adduct 9a, and reacts with ether to give the ethoxy derivative 8f. 8a-d react with AlMe$_3$ to yield the corresponding dimethyl derivatives 8g-j, which give unstable radical anions when treated with potassium in THF. The ESR parameters are reported. In electrochemical experiments irreversible reductions of 8g-j are observed. 8g-j react with (C$_5$H$_5$)Co(C$_2$H$_4$)$_2$ to give the intermediate 16 VE complexes (C$_5$H$_5$)Co(8), in which C-H activation occurs with formation of the corresponding red 1,4-diboracyclohexadiene complexes 10. The X-ray structure analyses of 10h and 10j are reported.

  • PDF

Removing High Concentration Organic Matters by Using Electrolysis (전기분해에 의한 고농도 유기물질 제거 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Lee, Jea-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.251-264
    • /
    • 2000
  • Organic removal from synthetic wastewater by electrochemical methods was investigated with various operating parameters, such as current density, retention time, electrode gap and $Cl^-/COD_{Cr}$ ratio. In electrolysis, dioxide iridium coated titanium ($IrO_2/Ti$) and stainless steel plate were used for anode and cathode respectively. The $COD_{Cr}$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/COD_{Cr}$ ratio was about $1.3kgCl^-/kgCOD_{Cr}$ when organic removal obtained 70 %, $Cl^-/COD_{Cr}$ ratio needs $2.2kgCl^-/kgCOD_{Cr}$ so as to organic completely remove. The removal efficiency of organics increased with current density, retention time and $Cl^-/COD_{Cr}$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $COD_{Cr}$ removal efficiencies are as follows. $$COD_{Cr}(%)=80.0360(Current\;density)^{0.4451}{\times}(HRT)^{0.8102}{\times}(Gap)^{-0.4915}{\times}(Cl^-/COD_{Cr})^{0.5805}$$ There existed a competition between the removals for $COD_{Cr}$ and ammonium during electrolysis, the removal of ammonium was shown to be dominant and $COD_{Cr}$ removal was low. But $COD_{Cr}$ removal was raised as addition of alkalinity.

  • PDF