• Title/Summary/Keyword: electrochemical parameters

Search Result 339, Processing Time 0.032 seconds

Amperometric Determination of Nitrite at Poly(Methylene Blue)-Modified Glassy Carbon Electrode

  • Xu, Guang-Ri;Xu, Guifang;Xu, Ming-Lu;Zhang, Zhengqing;Tian, Yuan;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.415-419
    • /
    • 2012
  • Electrochemical characteristics of nitrite ion were investigated at a poly(methylene blue)-modified glassy carbon electrode by cyclic voltammetry and differential pulse voltammetry. The poly(methylene blue)-modified glassy carbon electrode exhibited enhanced anodic signals for nitrite. The effects of key parameters on the detection of nitrite were evaluated at the modified electrode, such as pH, accumulation time, and scan rate. Under optimum condition, the chemically modified electrode can detect nitrite in the concentration range $2.0{\times}10^{-6}$ to $5.0{\times}10^{-4}$ M with the detection limit of $2.0{\times}10^{-6}$ M and a correlation coefficient of 0.999. The detection of nitrite using the chemically modified electrode was not affected by common ions such as $Na^+$, $K^+$, $Ca^{2+}$, $Cl^-$, $HPO_4^{2-}$ and $H_2PO_4^- $. The modified electrode showed good stability and reproducibility. The practical application of the present method was successfully applied to the determination of nitrite ion in cabbage samples.

Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode

  • Nguyen, Hung Tai;Tran, Thi Lan;Nguyen, Dang Thanh;Shin, Eui-Chol;Kang, Soon-Hyung;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.244-260
    • /
    • 2018
  • Issues in the electrical characterization of semiconducting photoanodes in a photoelectrochemical (PEC) cell, such as the cell geometry dependence, scan rate dependence in DC measurements, and the frequency dependence in AC measurements, are addressed, using the example of a $TiO_2$ photoanode. Contrary to conventional constant phase element (CPE) modeling, the capacitive behavior associated with Mott-Schottky (MS) response was successfully modeled by a Havriliak-Negami (HN) capacitance function-which allowed the determination of frequency-independent Schottky capacitance parameters to be explained by a trapping mechanism. Additional polarization can be successfully described by the parallel connection of a Bisquert transmission line (TL) model for the diffusion-recombination process in the nanostructured $TiO_2$ electrode. Instead of shunt CPEs generally employed for the non-ideal TL feature, TL models with ideal shunt capacitors can describe the experimental data in the presence of an infinite-length Warburg element as internal interfacial impedance - a characteristic suggested to be a generic feature of many electrochemical cells. Fully parametrized impedance spectra finally allow in-depth physicochemical interpretations.

Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode (수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가)

  • Moon, Kyung-Man;Lee, Sung-Yul;Kim, Yun-Hae;Lee, Myung-Hyoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

Simulation of Neutron irradiation Corrosion of Zr-4 Alloy Inside Water Pressure reactors by Ion Bombardment

  • Bai, X.D.;Wang, S.G.;Xu, J.;Chen, H.M.;Fan, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.96-109
    • /
    • 1997
  • In order to simulate the corrosion behavior of Zr-4 alloy in pressurized water reactors it was implanted (or bombarded) with 190ke V $Zr^+\; and \;Ar^+$ ions at liquid nitrogen temperature and room temperature respectively up to a dose of $5times10^{15} \sim 8\times10^{16} \textrm{ions/cm}^2$ The oxidation behavior and electrochemical vehavior were studied on implanted and unimplanted samples. The oxidation kinetics of the experimental samples were measured in pure oxygen at 923K and 133.3Pa. The corrosion parameters were measured by anodic polarization methods using a princeton Applied Research Model 350 corrosion measurement system. Auger Electron Spectroscopy (AES) and X-ray Photoelectric Spectroscopy (XPS) were employed to investigate the distribution and the ion valence of oxygen and zirconium ions inside the oxide films before and after implantation. it was found tat: 1) the $Zr^+$ ion implantation (or bombardment) enhanced the oxidation of Zircaloy-4 and resulted in that the oxidation weight gain of the samples at a dose of $8times10^{16}\textrm{ions/cm}^2$ was 4 times greater than that of the unimplantation ones;2) the valence of zirconium ion in the oxide films was classified as $Zr^0,Zr^+,Zr^{2+},Zr^{3+}\; and \;Zr^{4+}$ and the higher vlence of zirconium ion increased after the bombardment ; 3) the anodic passivation current density is about 2 ~ 3 times that of the unimplanted samples; 4) the implantation damage function of the effect of ion implantation on corrosion resistance of Zr-4 alloy was established.

  • PDF

An AC Impedance Spectrum Measurement Device for the Battery Module to Predict the Remaining Useful Life of the Lithium-Ion Batteries (리튬배터리의 잔여 유효 수명 추정을 위한 배터리 모듈용 AC 임피던스 스펙트럼 측정장치)

  • Lee, Seung-June;Farhan, Farooq;Khan, Asad;Cho, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.251-260
    • /
    • 2020
  • A growing interest has emerged in recycling used automobile batteries into energy storage systems (ESSs) to prevent their harmful effects to the environment from improper disposal and to recycle such resources. To transform used batteries into ESSs, composing battery modules with similar performance by grading them is crucial. Imbalance among battery modules degrades the performance of an entire system. Thus, the selection of modules with similar performance and remaining life is the first prerequisite in the reuse of used batteries. In this study, we develop an instrument to measure the impedance spectrum of a battery module to predict the useful remaining life of the used battery. The developed hardware and software are used to apply the AC perturbation to the used battery module and measure its impedance spectrum. The developed instrument can measure the impedance spectrum of the battery module from 0.1 Hz to 1 kHz and calculate the equivalent circuit parameters through curve fitting. The performance of the developed instrument is verified by comparing the measured impedance spectra with those obtained by a commercial equipment.

Low Potential Amperometric Determination of Ascorbic Acid at a Single-Wall Carbon Nanotubes-Dihexadecyl Hydrogen Phosphate Composite Film Modified Electrode

  • Fei, Junjie;Wu, Kangbing;Yi, Lanhua;Li, Junan
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1403-1409
    • /
    • 2005
  • A sensitive and selective electrochemical method was developed for the amperometric determination of ascorbic acid (AA) at a glassy carbon electrode (GCE) modified with single-wall carbon nanotubesdihexadecyl hydrogen phosphate (SWNT-DHP) composite film. The SWNT-DHP composite film modified GCE was characterized with SEM. The SWNT-DHP composite film modified GCE exhibited excellent electrocatalytic behaviors toward the oxidation of AA. Compared with the bare GCE, the oxidation current of AA increased greatly and the oxidation peak potential of AA shifted negatively to about -0.018 V (vs. SCE) at the SWNT-DHP composite film modified GCE. The experimental parameters, which influence the oxidation current of AA, were optimized. Under the optimal conditions, the amperometric measurements were performed at a applied potential of -0.015 V and a linear response of AA was obtained in the range from 4 ${\times}$ $10^{-7}$ to 1 ${\times}$ $10^{-4}$ mol $L^{-1}$ and with a limit of detect (LOD) of 1.5 ${\times}$ $10^{-7}$ mol $L^{-1}$. The interferences study showed that the SWNT-DHP composite film modified GCE exhibited good sensitivity and excellent selectivity in the presence of high concentration uric acid and dopamine. The proposed procedure was successfully applied to detect AA in human urine samples with satisfactory results.

The electrode characteristics of non-stoichiometric Zr-based Laves phase alloys (Non-Stoichiometric Zr-Based 라베스상 수소저장합금의 방전특성)

  • Kim, Dong-Myung;Jung, Jai-Han;Lee, Han-Ho;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • The Laves phase alloy hydrides have some promising properties as electrode materials in reversible metal hydride batteries. In this work, the hydrogen storage performance, crystallographic parameters, surface morphology, surface area and electrochemical characteristics of the non-stoichiometric $ZrMn_{0.3}V_{0.7}Ni_{1.4+{\alpha}}$, $ZrMn_{0.5}V_{0.5}Ni_{1.4+{\alpha}}$($\alpha$ =0.0, 0.2, 0.4, 0.6) alloys were examined. These as-cast alloys were found to have mainly a cubic C15-type Laves phase structure by X -ray diffraction analysis. The equilibrium pressure of the alloy were increased as $\alpha$ increased in both two types alloy. In case of $ZrMn_{0.5}V_{0.5}Ni_{1.4+{\alpha}}$ alloys, discharge efficiency and the rate capability of the alloy were decreased as $\alpha$ increased but, these values were increased in case of $ZrMn_{0.3}V_{0.7}Ni_{1.4+{\alpha}}$ alloys. The differences of these electrode properties observed were dependent on the reaction surface area and the catalytic activity of unit area of the each electrode.

  • PDF

Voltammetric Determination of Copper(II) Using Glassy Carbon Electrodes Modified with Nafion-DTPA-Glycerol

  • Park, Chan-Ju;Park, Eun-Heui;Chung, Keun-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.177-180
    • /
    • 2003
  • A glassy carbon electrode(GCE) modified with nafion-DTPA-glycerol was used for the highly selective and sensitive determination of a trace amount of Cu$\^$2+/. Various experimental parameters, which influenced the response of nafion-DTPA-glycerol modified electrode to Cu$\^$2+/, were optimized. The copper(II) was accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface was characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry, A linear range was obtained in the concentration range 1.0${\times}$10$\^$-8/M∼1.0${\times}$10$\^$-6/M Cu(II) with 7 min preconcentration. Further, when an approximate amount of lead(II) is added to the test solution, nafion-DTPA-glycerol modified glassy carbon electrode has a dynamic range of 2 orders magnitude(1.0${\times}$10$\^$-9/M∼1.0${\times}$10$\^$-7/M). The detection limit(3 $\sigma$) was as low as 5.0${\times}$10$\^$-6/M(0.032ppb). The interferences from other metal ions could be reduced by adding KCN into the sample solutions. This method was applied to the determination of coppe,(II) in certified reference material(3.23${\times}$10$\^$-7/M, 21ppb), sea water(9.50${\times}$10/sup-7/M, 60ppb). The result agrees satisfactorily with the value measured by Korea Research Institute of Standard and Science.

  • PDF

A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys

  • Lee, Sang-Min;Kim, Seoung-Hoe;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.197-210
    • /
    • 1999
  • The hydrogen storage performance and electrochemical properties of $Zr_{1-X}Ti_X(Mn_{0.2}V_{0.2}Ni_{0.6})_{1.8}$(X=0.0, 0.2, 0.4, 0.6) alloys are investigated. The relationship between discharge performance and alloy characteristics such as P-C-T characteristics and crystallographic parameters is also discussed. All of these alloys are found to have mainly a C14-type Laves phase structure by X-ray diffraction analysis. As the mole fraction of Ti in the alloy increases, the reversible hydrogen storage capacity decreases while the equilibrium hydrogen pressure of alloy increases. Furthermore, the discharge capacity shows a maxima behavior and the rate-capability is increased, but the cycling durability is rapidly degraded with increasing Ti content in the alloy. In order to analyze the above phenomena, the phase distribution, surface composition, and dissolution amount of alloy constituting elements are examined by S.E.M., A.E.S. and I.C.P. respectively. The decrease of secondary phase amount with increasing Ti content in the alloy explains that the micro-galvanic corrosion by multiphase formation is little related with the degradation of the alloys. The analysis of surface composition shows that the rapid degradation of Ti-substituted Zr base alloy electrode is due to the growth of oxygen penetration layer. After comparing the radii of atoms and ions in the electrolyte, it is clear that the electrode surface becomes more porous, and that is the source of growth of oxygen penetration layer while accelerating the dissolution of alloy constituting elements with increasing Ti content. Consequently, the rapid degradation (fast growth of the oxygen-penetrated layer) with increasing Ti substitution in Zr-based alloy is ascribed to the formation of porous surface oxide through which the oxygen atom and hydroxyl ion with relatively large radius can easily transport into the electrode surface.

  • PDF

Real-time Pesticide Assay on Live Tissue Using Electrochemical Graphite Pencil Electrode (살아있는 세포에서 전기화학적 흑연 연필심 전극을 사용한 살균제의 실시간 분석)

  • Lee, Su-Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.208-215
    • /
    • 2006
  • A simply prepared graphite, pencil-type working electrode was utilized to monitor fenitrothion concentrations, using the cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry methods. The optimum conditions for analysis were sought. A very low detection limit was obtained compared to that obtained when other common voltammetry methods are used. The optimal parameters of the pencil-type electrode were found to be as follows: a pH of 3.7, a frequency of 500 Hz, an SW amplitude of 0.1 V, an increment potential of 0.005 V, an initial potential of -0.9V, and a deposition time of 500 sec. The analytical detection limit was determined to be 6.0 ngL-1 (2.16410-11 molL-1) fenitrothion at SW anodic and CV, and the relative standard deviation at the fenitrothion concentration of SW anodic 10 ugL-1 was 0.30% (n = 15) under the optimum conditions. Analysis was directly conducted through in-vivo real-time assay.