• Title/Summary/Keyword: electrochemical activation

Search Result 228, Processing Time 0.032 seconds

Studies on Charge/Discharge Behaviors according to Electrochemical Activation of Green Cokes Type Mesocarbon Microbeads (그린 코크스 상 메조카본 마이크로비즈의 전기화학 부활에 따른 충방전 특성 연구)

  • Roh, Kwang Chul;Park, Jin Bae;Park, Chul Wan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.599-602
    • /
    • 2007
  • 23 F/cc grade new type of high density activated carbon from crystalline green cokes type of mesocarbon microbeads has been synthesized by chemical and electrochemical activation. In order for these materials to have high performance, electrochemical behavior during electrochemical activation has been investigated by sequential voltage applying schemes. These results showed that the effective voltage for electrochemical activation was about 2.7~3.2 V irrelevant to applying voltage due to the decrease of surface activation of activated carbon with high specific surface area.

Electrochemical Capacitance of Activated Carbons Regenerated using Thermal and Chemical Activation

  • Park, Jung Eun;Lee, Gi Bbum;Hwang, Sang Youp
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2021
  • Spent activated carbons (SACs) collected from a water treatment plant were regenerated and then adopted as electrochemical material in capacitors. The SACs used in this study were regenerated via two steps, namely thermal and chemical activation. However, during the activation process, the adsorbates were converted into ashes, which caused pore blockage and decreased specific surface area. The regenerated SACs were washed with acid solutions with different levels of acidity (strong: HCl, mild: H3PO4, and weak: H2O2) to remove the ashes. The regenerated SACs washed with HCl exhibited the highest specific surface area, although their capacitance was not the highest. Conversely, the specific surface area of regenerated SACs washed using H3PO4 was slightly lower than that of HCl, but exhibited higher capacitance and electrochemical stability. Although the strong acid removed the generated ashes in the pores efficiently, it could adversely affect their structural stability, which would lead to lower capacitance.

Electrochemical Behaviors of Activated Carbons Prepared from Polymeric Precursor

  • Park, Soo-Jin;Lee, Eun-Jung;Kim, Byung-Joo;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.134-136
    • /
    • 2007
  • In this work, activated carbons (ACs) were prepared from polystyrene-based cation-exchangeable resin (PSI) by a chemical activation with KOH as an activating agent. The surface morphologies were observed by using SEM, and the textural properties were investigated by using nitrogen adsorption at 77 K. From the experimental results, it was found that the well-developed micro- and mesopores were produced by a chemical activation, and the textural properties including specific surface areas and pore volumes were greatly enhanced. The electrochemical behaviors of the ACs showed similar phenomena with that of textural properties. These results indicated that KOH activation played an important role in the changes of surface, and pore structures, resulting in enhancing the electrochemical properties of the ACs prepared in present work.

Novel Activation by Electrochemical Potentiostatic Method

  • Lee, Hak-Hyeong;Lee, Jun-Gi;Jeong, Dong-Ryeol;Gwon, Gwang-U;Kim, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

A Study on the Electrochemical Characteristics of Hydrogen Storage Alloy Electrodes for Secondary Batteries (축전지용 수소저장합금 전극의 전기화학적 특성에 관한 연구)

  • KIM, Chan-Jung;LEE, Jae-Myoung;CHOI, Byung-Jin;KIM, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.2
    • /
    • pp.29-40
    • /
    • 1993
  • Intensive studies on the electrochemical characteristics of TiFe type alloy electrodes have been carried out to clarify the mechanism of electrochemical hydrogen absorption and desorption. It was found that electrochemical activation of the TiFe type alloys is difficult and that charge efficiencies are very low even after a decade of activation cycles. However, by the pretreatment of the powders such as gas activation and/or Ni chemical plating, charge efficiencies fairly increased, especially for the $TiFe_{0.8}Ni_{0.2}$ alloy. It was considered that difficulties to activation and lower charge efficies of the alloys are due to the presence of the passivation films, which prohibit inward diffusion of hydrogen and promote the combination of adsorbed hydrogen atom to gas bubbles during the electrochemical charge. In addition, lower diffusivity of hydrogen in the alloys may be played an important role lowering the charge efficiencies.

  • PDF

Effect of Chemical Activation on Electrochemical behaviors of Ni-loaded Graphite Nanofibers (화학적 활성화에 따른 Ni 담지된 흑연나노섬유의 전기화학적 거동)

  • Yoo, Hye-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • In this study, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH reagent. The effect of A-GNFs on the surface and textural properties of Ni-loaded graphite nanofibers (Ni/GNFs) was investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and Brunauer-Emmett-Teller (BET). The textural properties of samples were investigated by $N_2$/77K adsorption isotherms. The electrochemical performances were investigated by cyclic voltammetry. As a results, the electrochemical performances of Ni/GNFs were improved with usage of A-GNFs. This could be interpreted by the high specific surface area and large total pore volume of the A-GNFs.

  • PDF

Electrochemical Behaviors of Binary Ti-Zr Alloys

  • Oh, M.Y.;Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2009
  • Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by arc melting and homogenized for 24 hr at $1000^{\circ}C$ in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of -1500 ~ 2000 mV), potentiostatic test (const. potential of 300 mV) in artificial saliva solution by potentiostat (EG&G Co, PARSTAT 2273. USA).

The Analysis on the Activation Procedure of Polymer Electrolyte Fuel Cells

  • Jang, Jong-Mun;Park, Gu-Gon;Sohn, Young-Jun;Yim, Sung-Dae;Kim, Chang-Soo;Yang, Tae-Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.131-135
    • /
    • 2011
  • It is, in general, believed that during the activation process, the proton conductivity increases due to wetting effect and the electrochemical resistance reduction, resulting in an increase in the fuel cell performance with time. However, until now, very scant information is available on the understanding of activation processes. In this study, dominant variables that effect on the performance increase of membrane electrode assemblies (MEAs) during the activation process were investigated. Wetting, pore restructuring and active metal utilization were analyzed systematically. Unexpectedly, the changes for both ohmic and reaction resistance characterized by the electrochemical impedance spectroscopy (EIS) after initial wetting process were much smaller when considering the degree of cell performance increases. However, the EIS spectra represents that the pore opening of electrode turns into gas transportable structure more easily. The increase in the performance with activation cycles was also investigated in a view of active metals. Though the particle size was grown, the number of effective active sites might be exposed more. The impurity removal and catalytic activity enhancement measured by cyclic voltammetry (CV) could be a strong evident. The results and analysis revealed that, not merely wetting of membrane but also restructuring of electrodeand catalytic activity increase are important factors for the fast and efficient activation of the polymer electrolyte fuel cells.

The Electrochemical Characteristics of Anodized Ti-29Nb-xZr Alloys

  • Lee, Kang;Choe, Han-Choel;Ko, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.219-219
    • /
    • 2009
  • In this study, electrochemical impedance characteristics of anodic oxide layer formed on titanium ternary alloy surface have been investigated, Titanium oxide layers were grown on Ti-29Nb-xZr(x=3, 5, 7, 10 and 15 wt%) alloy substrates using phosphoric acid electrolytes.

  • PDF

Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons (Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향)

  • Lee, Ji-Han;Heo, Gun-Young;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.739-744
    • /
    • 2012
  • In this work, we prepared the carbons from synthesized styrene-acrylonitrile carbon precursor. The prepared carbons were chemically activated, and then the activated SAN-based carbons were named as A-SANs. The activations were carried out at different temperatures to investigate the effect of activation temperature on the surface and electrochemical properties of the activated SAN-based carbons for using as an electrode of electric double layer capacitors (EDLC). The characteristics of A-SAN were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area and pore size analysis. Also, the electrochemical behaviors were observed by cyclic voltammetry and galvanostatic charge-discharge method. From the results, the A-SAN 700 showed excellent electrochemical property and the highest specific capacitance, but these properties decreased when the activation temperature was above $700^{\circ}C$. This is due to the fact that the activation at a temperature over $700^{\circ}C$ causes deformation of micropore structures.