• Title/Summary/Keyword: electro-optic

Search Result 414, Processing Time 0.024 seconds

Multihop Connection Establishment Algorithms in Wavelength-Routed Optical Networks (파장분할다중화방식 전광통신망에서 다중홉 연결 알고리즘)

  • 김상완;서승우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.951-958
    • /
    • 2000
  • In wavelength-routed all-optical networks, signals are transmitted on a direct optical path, or a lightpath, in a single-hop manner without opto-electronic/electro-optic(OE/EO) conversion at intermediate nodes. However, due to the physical constraints of optical elements such as ASE noise and crosstalk signals can be degraded un a long path. To establish a connection under such impairments, the optical signal may need to be regenerated at intermediate nodes, dividing a lightpath into two or more fragments. However, since signal regeneration at intermediate nodes requires additional network resources, the selection of these nodes should be made carefully to minimize blocking of other lightpaths. In this paper, we deal with the problem of establishing a lightpath in a multihop manner under physical constraints. We provide both minimal-cost and heuristic algorithms for locating signal regeneration nodes(SRNs). For a minimal-cost algorithm, we formulate the problem using dynamic programming(DP) such that blocking of other lightpaths due to the lack of transmitters/receivers(TXs/RXs) and wavelengths is minimized throughout the network.

  • PDF

A study of the development of a simple driver for the Pockels cell Q-switch and Its characteristics (단순화된 Pockels cell Q-switch용 구동기 개발 및 특성에 관한 연구)

  • Park, K.R.;Joung, J.H.;Hong, J.H.;Kim, B.G.;Moon, D.S.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2116-2118
    • /
    • 2000
  • In the technique of Q-switching, very fast electronically controlled optical shutters can be made by using the electro-optic effect in crystals or liquids. The driver for the Pockels cell must be a high-speed, high-voltage switch which also must deliver a sizeable current. Common switching techniques include the use of vacuum tubes, cold cathode tubes, thyratrons, SCRs, and avalanche transistors. Semiconductor devices such as SCRs, avalanche transistors, and MOSFETs have been successfully employed to drive Pockels cell Q-switch. In this study, a simple driver for the Pockels cell Q-switch was developed by using SCRs, pulse transformer and TTL ICs. The Pockels cell Q-switch which was operated by this driver was employed in pulsed Nd:YAG laser system to investigate the operating characteristics of this Q-switch. And we have investigated the output characteristics of this Q-switch as a function of the Q-switch delay time to Xe flashlamp current on.

  • PDF

Surface Morphology and Quantum Size Effect of ZnS Thin Film Grown by Solution Growth Technique (용액성장된 ZnS 박막의 표면형상 및 양자사이즈효과)

  • Lee, Jong-Won;Lee, Sang-Uk;Jo, Seong-Ryong;Kim, Seon-Tae;Park, In-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • In this study, the nanosized ZnS thin films that can be used for fabrication of blue light-emitting diodes, electro-optic modulators, and n-window layers of solar cells were grown by the solution growth technique (SGT), and their surface morphology and film thickness and grain size dependence on the growth conditions were examined. Based on these results, the quantum size effects of ZnS were systematically investigated. Governing factors related to the growth condition were the concentration of precursor solution, growth temperature, concentration of aq. ammonia, and growth duration. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). With decreasing growth temperature and decreasing concentration of precursor solution, the surface morphology of film was found to be improved. Also, the film thickness depends largely on the ammonia concentration. In particular, this is the first time that the surface morphology dependence of ZnS film grown by SGT on the ammonia concentration is reported. The energy band gaps of samples were determined from the optical transmittance values, and were shown to vary from 3.69 eV to 3.91 eV. These values were substantially higher than 3.65 eV of bulk ZnS. It was also shown that the quantum size effect of SGT grown ZnS is larger than that of the ZnS films grown by most other growth techniques.

Effect of Seed-layer thickness on the Crystallization and Electric Properties of SBN Thin Films. (SBN 박막의 결정화 및 전기적 특성에 관한 씨앗층 두께의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin films of different thickness were pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $4500\;{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800\;^{\circ}C$ in air, respectively, The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was difference in the crystal structure with heat-treatment temperature, and the electric properties depended on the heating temperature and the seed-layer thickness. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15\;{\mu}C/cm^2$, the coercive field (Ec) 65 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Accuracy analysis on the temperature measurement with thermistor (인공위성용 서미스터의 온도측정 정확도 분석)

  • Suk, Byong-Suk;Lee, Yun-Ki;Lee, Na-Young
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2008
  • The thermistors and AD590 are widely used for temperature measurement in space application. The resistance of thermistor will vary according to the temperature variation therefore the external voltage or current stimulus signal have to be provided to measure resistance variation. Recently high resolution electro optic camera system of satellite requires tight thermal control of the camera structure to minimize the thermal structural distortion which can affects the image quality. In order to achieve $1^{\circ}$(deg C) thermal control requirement, the accuracy of temperature measurement have to be higher than $0.3^{\circ}$(deg C). In this paper, the accuracy of temperature measurement using thermistors is estimated and analyzed.

  • PDF

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

Flexible Liquid Crystal Displays Using Liquid Crystal-polymer Composite Film and Colorless Polyimide Substrate

  • Kim, Tae Hyung;Kim, Minsu;Manda, Ramesh;Lim, Young Jin;Cho, Kyeong Jun;Hee, Han;Kang, Jae-Wook;Lee, Gi-Dong;Lee, Seung Hee
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.66-71
    • /
    • 2019
  • Application of liquid crystal (LC) materials to a flexible device is challenging because the bending of LC displays easily causes change in thickness of the LC layer and orientation of LCs, resulting in deterioration in a displayed image quality. In this work, we demonstrate a prototype device combining a flexible polymer substrate and an optically isotropic LC-polymer composite in which the device consists of interdigitated in-plane switching electrodes deposited on a flexible colorless polyimide substrate and the composite consisting of nano-sized LC droplets in a polymer matrix. The device can keep good electro-optic characteristics even when it is in a bending state because the LC orientation is not disturbed in both voltage-off and -on states. The proposed device shows a high potential to be applicable for future flexible LC devices.