• Title/Summary/Keyword: electro-conductive

Search Result 104, Processing Time 0.026 seconds

Electro-mechanical impedance based monitoring for the setting of cement paste using piezoelectricity sensor

  • Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung;Lee, Chang Joon
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2016
  • The evolution of the electro-mechanical impedance (EMI) of a piezoelectricity (PZT) sensor was investigated to determine the setting times of cement paste in this study. The PZT sensor coated with non-conductive acrylic resin was embedded in fresh cement paste and the EMI signatures were continuously monitored. Vicat needle test and semi-adiabatic calorimetry test were also conducted to validate the EMI sensing technique. Significant changes in the EMI resonance peak magnitude and frequency during the setting period were observed and the setting times determined by EMI sensing technique were relevant to those measured by Vicat needle test and semi-adiabatic calorimetry test.

Investigation of Conductive Pattern Line for Direct Digital Printing (디지털 프린팅을 위한 전도성 배선에 관한 연구)

  • Kim, Yong-Sik;Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Tae-Hoon;Park, Jae-Chan;Kim, Tae-Gu;Jeong, Kyoung-Jin;Yun, Kwan-Soo;Park, Sung-Jun;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.502-502
    • /
    • 2007
  • Current thin film process using memory device fabrication process use expensive processes such as manufacturing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as PCB, FCPB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line for the electronic circuit board using metal ink contains Ag nano-particles. Metal lines are fabricated by two types of printing methods. One is a conventional printing method which is able to quick fabrication of fine pattern line, but has various difficulties about thick and high resolution DPI(Dot per Inch) pattern lines because of bulge and piling up phenomenon. Another(Second) methods is sequential printing method which has a various merits of fabrication for fine, thick and high resolution pattern lines without bulge. In this work, conductivities of metal pattern line are investigated with respect to printing methods and pattern thickness. As a result, conductivity of thick pattern is about several un.

  • PDF

Study on Micro Dried Bio-potential Electrodes Using Conductive Epoxy on Textile Fabrics (전도성 에폭시를 이용한 직물 위에 구현된 건식 생체전위 전극의 연구)

  • Cha, Doo-Yeol;Jung, Jung-Mo;Kim, Deok-Su;Yang, Hee-Jun;Choi, Kyo-Sang;Choi, Jong-Myong;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • In this paper, micro dried bio-potential electrodes are demonstrated for sEMG (surface ElectroMyoGraphic) signal measurement using conductive epoxy on the textile fabric. Micro dried bio-potential electrodes on the textile fabric substrate have several advantages over the conventional wet/dry electrodes such as good feeling of wearing, possibility of extended-wearing due to the good ventilation. Also these electrodes on the textile fabric can easily apply to the curved skin surface. These electrodes are fabricated by the screen-printing process with the size of $1mm{\times}10mm$ and the resultant resistance of these electrodes have the average value of $0.4{\Omega}$. The conventional silver chloride electrode shows the average value of $0.3{\Omega}$. However, the electrode on the textile fabric are able to measure the sEMG signal without feeling of difference and this electrode shows the lower resistance of $1.03{\Omega}$ than conventional silver chloride electrode with $2.8{\Omega}$ in the condition of the very sharp curve surface (the radius of curvature is 40 mm).

Effect of Conductive Particles on Electrical Conductivity using EHD Ink Jet Printing Technology (EHD Ink Jet Printing 기술을 이용한 Conductive Particle의 전기전도도에 미치는 영향)

  • Ahn, Ju-Hun;Lee, Yong-Chan;Choi, Dae-San;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • ACF, which is used for the transparent electrode film is manufactured by the thermocompression method with conductive particles. However, the method has disadvantages since there are many wasted materials and the process is complex. To overcome the demerits of the conventional method, EHD printing technology with conductive particles ink is proposed. The line thickness of patterning is influenced by the characteristics of the inks and the printing conditions. Therefore, it is salient to find the most conducive conditions for the micro patterning. In this paper, the ink with conductive particles was manufactured, and the patterning results were obtained by varying the nozzle thickness and the flow rate. The electrical conductivity according to the ejection of the particles ink is obtained.

Interfacial Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Different Embedding Angle using Electro-Micromechanical Technique (Electro-Micromechanical Technique을 이용한 각의 변화에 따른 Carbon과 SiC Fiber/Epoxy Composites의 계면감지능 및 평가)

  • Lee, Sang-Il;Kong, Jin-Woo;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Interfacial properties and electrical sensing for fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time was long to the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique can be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

  • PDF

Embroidery 'ㅂ' Character Type UHF RFID Tag Antenna Design ('ㅂ'자 자수형 도전사 UHF RFID 태그 안테나)

  • Chung, You-Chung;Kim, Yeon-Ho;Lee, Kyoung-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1071-1076
    • /
    • 2009
  • A wearable embroidery 'ㅂ' character shape UHF RFID tag antenna has been designed using conductive electro-thread. After testing characteristics of various electro-threads, the embroidery tag, with a T-matching structure, has been designed on a cloth with 200D(denier) electro-thread which performs electrically better. The embroidery tag on a piece of fabric or clothes made with the flexible electro-thread is a wearable tag and possible to be recognized by an RFID system. The conductivity of different deniers of electro-threads has been measured. The measured conductivity has been used for simulation and fabrication to have accurate simulation results. To verify the characteristics of the tag antenna, the return loss and reading range of the fabricated embroidery electro-thread UHF RFID tag antenna have been tested. The reading range is approximately 1.52 m.

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

Synthesis of transparent conductive film containing solution -deposited poly (3, 4-ethylenedioxythiophene) (PEDOT) and water soluble multi-walled carbon nanotubes

  • Tung, Tran Thanh;Kim, Won-Jung;Kim, Tae-Young;Lee, Bong-Seok;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.205-206
    • /
    • 2008
  • The transparent conductive film was prepared by bar coating method of poly (3, 4-ethylenedioxythiophene) (PEDOT) and poly (sodium 4-stylenesulfonate) grafted multi-walled carbon nanotubes (MWNT-PSS) nanocomposites solution on the polyethylene terephthalate (PET) film. In this case, multi-wall carbon nanotubes was treated by chemical methods to obtain water soluble MWNT-PSS and then blending with PEDOT. The non-covalent bonding of polymer to the MWNT surface was confirmed by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA) and Transmission electro microscope (TEM) investigation also showed a polymer-wrapped MWNT structure. Furthermore, the electrical, transmission properties of the transparent conductive film were investigated and compared with control samples are raw PEDOT films.

  • PDF

A Development of Measuring System for Electromagnetic Shielding Effect applicable to a new shielding material by Use of conductive polymer (전도성 고분자를 이용한 신소재 차폐재료의 전자파 차폐 측정장치 개발)

  • Park, Y.I.;Kim, J.E.;Kang, W.J.;Jang, Y.M.;Suh, K.S.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1538-1540
    • /
    • 1999
  • For the development of electro magnetic shielding materials by use of the conductive polymer, measuring technique related to their shielding effect should be well established. For this propose, several commercialized techniques based on different conception have been well compared in order to adopt appropriate method to our materials under development and then, flanged coaxial holder type fixture device has been fabricated and tested satisfied performance has been obtained showing over 90dB in dynamic range with accuracy of +/-2dB.

  • PDF

Chemical and Electrochemical Synthesis of Highly Conductive and Processable PolyProDOP-alkyl Derivatives

  • Cho, Youn-Kyung;Pyo, Myoung-Ho;Zong, Kyu-Kwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • New monomers, possessing various alkyl substituents on propylene dioxypyrrole, were synthesized. The monomers could be easily polymerized to produce highly conductive and soluble polymers. The corresponding polymers showed excellent solubility, retaining electrochemical and optical properties of their parent polymer [poly(propylene dioxypyrrole)]. The conductivities of chemically prepared polymers were quite high in a range of 20 and $60\;Scm^{-1}$. Solubility of the polymer in a common organic solvent was as high as no polymer is deposited on an electrode. The redox potentials of the electrochemically prepared polymers revealed quite stable electro-activity during repeated redox switching up to 500 times. The optoelectrochemistry studies also showed distinct color changes of the polymers upon changing the doping state, indicating strong absorption peaks at 400~600 nm in reduced states and complete bleaching in fully oxidized states.