• Title/Summary/Keyword: electro plating

Search Result 130, Processing Time 0.024 seconds

The Research of Ni/Cu Contact Using Light-induced Plating for Cryatalline Silicom Solar Cells (결정질 실리콘 태양전지에 적용될 Light-induced plating을 이용한 Ni/Cu 전극에 관한 연구)

  • Kim, Min-Jeong;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-355
    • /
    • 2009
  • The crysralline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more high efficiency and low cost endeavors many crystalline solar cells. The fabricaion process of high efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/AG contact, This metal contacts have only been used in limited areas in spite of their good srability and low contact resistance because of expensive materials and process. Commercial solar cells with screen-printed solar cells formed by using Ag paste suffer from loe fill factor and high contact resistance and low aspect ratio. Ni and Cu metal contacts have been formed by using electroless plating and light-induced electro plating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on 0.2~0.6${\Omega}$ cm, $20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Development of Copper Electro-Plating Technology on a Screen-Printed Conductive Pattern with Copper Paste

  • Eom, Yong-Sung;Son, Ji-Hye;Lee, Hak-Sun;Choi, Kwang-Seong;Bae, Hyun-Cheol;Choi, Jeong-Yeol;Oh, Tae-Sung;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2015
  • An electro-plating technology on a cured isotropic conductive pattern with a hybrid Cu paste composed of resin matrix, copper, and solder powders has been developed. In a conventional technology, Ag paste was used to perform a conductive pattern on a PCB or silicon substrate. From previous research, the electrical conductive mechanism and principle of the hybrid Cu paste were concisely investigated. The isotropic conductive pattern on the PCB substrate was performed using screen-printing technology. The optimum electro-plating condition was experimentally determined by processing parameters such as the metal content of the hybrid Cu paste, applied current density, and time for the electroplating in the plating bath. The surfaces and cross-sections were observed using optical and SEM photographs. In conclusion, the optimized processing conditions for Cu electro-plating technology on the conductive pattern were a current density of $40mA/cm^2$ and a plating time of 20min on the hybrid Cu paste with a metal content of 44 vol.%. More details of the mechanical properties and processing conditions will be investigated in further research.

The Treatment of Cyanide by Electro-Oxidation (전기산화를 이용한 Cyanide의 처리)

  • Kim, Hong-Tae;Lee, Young-Do;Kim, Kyu-Choul;Kim, Hak-Seok;Chun, Bong-Jun;Ku, Bong-Hun
    • Journal of Environmental Science International
    • /
    • v.17 no.3
    • /
    • pp.335-342
    • /
    • 2008
  • This study based on electro-coagulation & oxidation reaction is applied to wastewater treatment. Electro-oxidation reaction is used to remove cyanide(CN) which is contained in plating wastewater. Cyanide is transferred by gases such as $NH_3,\;NO_x,\;CO_2$. Analysis result and removal efficiency of Cyanide which is contained in heavy metal wastewater of plating plant, are shown as following paragraph. In electrode arrangement experiment, removal efficiency of carbon electrode(-)/STS316L electrode(+) arrangement method is superior to carbon electrode(-)/carbon electrode(+) arrangement method. Removal efficiencies of cyanide in different HRT such as 30 min, 45 min, 60 min, 75 min and 90 min are 85.5%, 93.1%, 98.0%, 98.7% and 99.4% respectively in carbon electrode(-)/STS316L electrode(+) arrangement method. Finally we can estimate the critical point at HRT of 60 min which the variation of removal efficiency is decreased and HRT to obtain removal efficiency of less than 1 mg/LCN is minimum 90 min.

Wear for Polisher Brush of EGL Plating Cell using Finite Element Analysis (유한요소해석을 이용한 EGL 도금조 Polisher Brush의 마모예측)

  • Ku, J.K.;Noh, H.G.;Heo, S.C.;Song, W.J.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.342-345
    • /
    • 2009
  • Electro galvanized steel is electroplated cold roller steel for improving corrosion resistance and paintability, and is widely used in automobiles and home appliances. In the electroplating line for manufacturing electro galvanized steel if plating process is carried out with impurity on conductor roll surface, the defects in manufacturing process occurs because of steel fault. For quality, polishing is always required to separate impurity on surface of conductor roll. In this study, finite element analysis of wear for polisher brush is carried out for replaced time of it.

  • PDF

Preparation of Porous Cobalt Thin Films by Using an Electrochemical Method (전기화학적 방법을 통한 다공성 코발트 박막 합성)

  • Ha, Seong-Hyeok;Shin, Heon-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • Morphology of porous cobalt electro-deposits was systematically investigated as functions of cobalt precursors in the plating bath and applied cathodic current density with a special focus on cobalt nano-rod formation. It was proved that the concentration of cobalt precursor plays little effect on the morphology of cobalt electro-deposits at relatively low plating current density while it significantly affects the morphology with increasing plating current density. Such a dependence was discussed in terms of the kinetics of two competitive reactions of cobalt reduction and hydrogen evolution. Cobalt nano-rod structure was created at specific ranges of cobalt precursor content and applied cathodic current density, and its diameter and length varied with plating time without notable formation of side branches which is usually found during dendrite formation. Specifically, the nano-rod length was preferentially increased in relative short plating time (<15 s), resulting in higher aspect ratio of nano-rod with plating time. Whereas, both the nano-rod length and diameter were increased nearly at the same level in a prolonged plating time, making the aspect ratio unchanged. From the analysis of crystal structure, it was confirmed that the cobalt nano-rod preferentially grew in the form of single crystal on a dense poly-crystalline cobalt thin film initially formed on the substrate.

Study on Ni-Cr Electro Plating Process for Staged Combustion Cycle Engine (다단연소사이클 엔진 적용을 위한 Ni-Cr 코팅에 관한 연구)

  • Bae, Byung-Hyun;Hwang, Yang-Jin;Lee, Kyu-Hwan;Rhee, Byong-ho;Han, Yeoung-Min;Kim, Young-June;Noh, Yong-Oh;Cho, Hwang-Rae;Hyun, Seong-Yoon;Bang, Jeong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.857-863
    • /
    • 2017
  • In this paper, the process of electro Ni and electro Cr plating is studied for the purpose of thermal barrier to protect the inner wall combustion chamber. The chamber is under the environment of very high temperature and high pressure when propellants burn in there. As one of the thermal barrier coatings, Zr-based thermal spray coating has been applied to the chamber. However, peeling of coating layer can occur under such a hard condition because of the difference of thermal expansion coefficients between the ceramic and the metallic wall. We study the characteristics of Ni-Cr coating and establish its process. It is found that the thickness of over $100{\mu}m$ of Ni and Cr coating layers with the uniformity of ${\pm}10%$ can be obtained with the used of as-developed plating bath.

  • PDF

Thermal Barrier Efficiency and Endurance of Ni-Cr Coating in Liquid Rocket Engine Combustor (액체로켓엔진 연소기에 적용된 니켈-크롬 코팅의 열차폐 효율과 내구성)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.138-143
    • /
    • 2009
  • Thermal barrier efficiency and endurance of coatings in liquid rocket engine combustor were evaluated for air plasma spray coating and electro/electroless plating. The result of firing tests has revealed occasional occurrence of local delamination of $ZrO_2$, NiCrAlY coating obtained by the method of air plasma spray in the region of supersonic flow and it necessitated a new coating method as a substitution. It was found that Ni-Cr coating by means of electro/electroless plating can substitute $ZrO_2$, NiCrAlY coatings of air plasma spray in terms of thermal barrier efficiency and endurance.

  • PDF

Real-time Monitoring of Cu Plating Process for Semiconductor Interconnect

  • Wang, Li;Jee, Young-Joo;Soh, Dae-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.64-64
    • /
    • 2009
  • As the advanced packaging technology developing, Copper electro-plating processing has be wildly utilized in the semiconductor interconnect technique. Chemical solution monitoring methods, including PH and gravity measurement exist in industry, but economical and practical real-time monitoring has not been achieved yet. Red-green-blue (RGB) color sensor can successfully monitor the condition of $CuSO_4$ solution during electric copper plating process. Comparing the intensity variations of the RGB data and optical spectroscopy data, strong correlation between two in-situ sensors have shown.

  • PDF