• Title/Summary/Keyword: electricity generation

Search Result 1,048, Processing Time 0.023 seconds

Study for Flow Phenomenon in the Circulation Water Pump Chamber using the Flow-3D Model (Flow-3D 모형을 이용한 순환수취수펌프장 내 흐름현상 연구)

  • Ha, Sung-Won;Kim, Tae-Won;Choi, Joo-Hwan;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.580-589
    • /
    • 2019
  • Indonesia has a very short supply of electricity. As a solution to this problem, plans for construction of thermal power plants are increasing. Thermal power plant require the cooling water system to cool the overheated engine and equipment that accompany power generation, and the circulation water pump chamber among the cooling water system are generally designed according to the ANSI (1998) standard. In this study, the design criterion $20^{\circ}$ for the spreading angle of the ANSI (1998) of the layout of the circulating water pump chamber can not be satisfied on the K-coal thermal power plant site condition in Indonesia. Therefore, 3-D numerical model experiment was carried out to obtain a hydraulically stable flow and stable structure. The Flow-3D model was used as numerical model. In order to examine the applicability of the Flow-3D model, the flow study results around the rectangular structure of Rodi (1997) and the numerical analysis results were compared around the rectangular structures. The longitudinal velocity distribution derived from numerical analysis show good agreement. In order to satisfy the design velocity in the circulating water pump chamber, a rectangular baffle favoring velocity reduction was applied. When the approach velocity into the circulating water pump chamber was occurred 1.5 m/s ~ 2.5 m/s, the angle of the separation flow on the baffle was occurred about $15^{\circ}{\sim}20^{\circ}$. By placing the baffle below the separation flow angle downstream, the design velocity of less than 0.5 m/s was satisfied at inlet bay.

An IoT based Green Home Architecture for Green Score Calculation towards Smart Sustainable Cities

  • Kumaran, K. Manikanda;Chinnadurai, M.;Manikandan, S.;Murugan, S. Palani;Elakiya, E.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2377-2398
    • /
    • 2021
  • In the recent modernized world, utilization of natural resources (renewable & non-renewable) is increasing drastically due to the sophisticated life style of the people. The over-consumption of non-renewable resources causes pollution which leads to global warming. Consequently, government agencies have been taking several initiatives to control the over-consumption of non-renewable natural resources and encourage the production of renewable energy resources. In this regard, we introduce an IoT powered integrated framework called as green home architecture (GHA) for green score calculation based on the usage of natural resources for household purpose. Green score is a credit point (i.e.,10 pts) of a family which can be calculated once in a month based on the utilization of energy, production of renewable energy and pollution caused. The green score can be improved by reducing the consumption of energy, generation of renewable energy and preventing the pollution. The main objective of GHA is to monitor the day-to-day usage of resources and calculate the green score using the proposed green score algorithm. This algorithm gives positive credits for economic consumption of resources and production of renewable energy and also it gives negative credits for pollution caused. Here, we recommend a green score based tax calculation system which gives tax exemption based on the green score value. This direct beneficiary model will appreciate and encourage the citizens to consume fewer natural resources and prevent pollution. Rather than simply giving subsidy, this proposed system allows monitoring the subsidy scheme periodically and encourages the proper working system with tax exemption rewards. Also, our GHA will be used to monitor all the household appliances, vehicles, wind mills, electricity meter, water re-treatment plant, pollution level to read the consumption/production in appropriate units by using the suitable sensors. These values will be stored in mass storage platform like cloud for the calculation of green score and also employed for billing purpose by the government agencies. This integrated platform can replace the manual billing and directly benefits the government.

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Brief Review on Exposure Characteristics, Monitoring Instruments and Threshold Limit Values for Extremely Low Frequency-Magnetic Field (ELF-MF) (직업성 극저주파 자기장 노출평가와 노출 기준에 대한 쟁점 고찰)

  • Dong-Uk, Park;Seunghee, Lee;Kyung Ehi, Zoh
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.381-392
    • /
    • 2022
  • Objectives: Objective of this study is to review briefly exposure characteristics, monitoring instruments and threshold limit values for extremely low frequency-magnetic field (ELF-MF) methods. This study was undertaken through brief literature review. We performed a literature search in PubMed to identify ELF-MF studies conducted in workplaces. Initial search keywords such as 'extremely low frequency-magnetic field (ELF-MF)' and 'electromagnetic fields (EMF)' combined or singly. We limited our review to occupational rather than general nonworkplace environmental exposures. Methods: The contents we reviewed: key industry and occupations generating ELF-MF, several direct-reading instruments monitoring ELF-MF and threshold limit values (TLV) preventing health effects may be caused by the exposure to ELF-MF. Results: The industries related to the generation and supply of electricity, electrolytic installations, welding, and induction heating and more were regarded as high ELF-MF exposure industries. All jobs handling or employed performed in power cable lines, electrical wiring, and electrical equipment are found to be exposed to ELF-MF. Threshold or ceiling limit, 1,000 µT, is established to prevent acute effects of exposure to low-frequency EMFs on the nervous system: the direct stimulation of nerve and muscle tissues and the induction of retinal phosphenes. The International Agency for Research on Cancer (IARC) has classified ELF-MF as possibly carcinogenic to humans chiefly based on epidemiological studies on childhood leukemia. However, a causal relationship between magnetic fields and several types of cancer including childhood leukemia has not been established nor has any other long-term effects. Risk management using precautionary measures, has been initiated by the US and EU to prevent chronic health effects related to ELF-MF exposure in workplaces. Conclusion: This study recommends the implementation of various measures such as theestablishment of occupational exposure limit values for ELF-MF and precautionary principle to prevent potential chronic occupational health effects may be caused by ELF-MF in Korea.

A Study on the Korean Patent Registration Trend of Outdoor Exercise Equipment for the Elderly (노인 관련 야외운동기구의 국내 특허 등록 동향에 관한 연구)

  • Dong-Cheol Chi;Hong-Young Jang
    • Journal of Industrial Convergence
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2023
  • This study analyzed the patent status of the outdoor exercise equipment used primarily by the elderly. The purpose is to utilize the basic data obtained to promote the health of the elderly. The information on the patent was collected from KIPRIS, an information search service provided by the Korean Intellectual Property Office. The search term used was 'outdoor exercise equipment', directly related patents were selected, and a final 157 were analyzed. As a result of the analysis, first, patent registration began in 2007, and 2-3 patents were registered on average every year. Second, patents from the perspective of sports convergence that provide an exercise prescription system using wireless communication, such as the ability to generate electricity by operating a power generation module, providing information on the user's exercise amount, or preventing the loss and theft of weights and safety accidents due to their characteristics, were searched for. Lastly, patents related to exercise equipment that can provide user convenience and increase the frequency of use of exercise equipment were searched. The results of this study confirmed that outdoor exercise equipment is being developed more for the elderly and their convenience, and that companies and public institutions are showing increased interest in outdoor exercise equipment for the elderly. In addition to patent trends analysis, follow-up research in connection with exercise programs using outdoor exercise equipment is needed to develop practical and convenient outdoor exercise equipment in the future.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

A Study on the Thermal Prediction Model cf the Heat Storage Tank for the Optimal Use of Renewable Energy (신재생 에너지 최적 활용을 위한 축열조 온도 예측 모델 연구)

  • HanByeol Oh;KyeongMin Jang;JeeYoung Oh;MyeongBae Lee;JangWoo Park;YongYun Cho;ChangSun Shin
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2023
  • Recently, energy consumption for heating costs, which is 35% of smart farm energy costs, has increased, requiring energy consumption efficiency, and the importance of new and renewable energy is increasing due to concerns about the realization of electricity bills. Renewable energy belongs to hydropower, wind, and solar power, of which solar energy is a power generation technology that converts it into electrical energy, and this technology has less impact on the environment and is simple to maintain. In this study, based on the greenhouse heat storage tank and heat pump data, the factors that affect the heat storage tank are selected and a heat storage tank supply temperature prediction model is developed. It is predicted using Long Short-Term Memory (LSTM), which is effective for time series data analysis and prediction, and XGBoost model, which is superior to other ensemble learning techniques. By predicting the temperature of the heat pump heat storage tank, energy consumption may be optimized and system operation may be optimized. In addition, we intend to link it to the smart farm energy integrated operation system, such as reducing heating and cooling costs and improving the energy independence of farmers due to the use of solar power. By managing the supply of waste heat energy through the platform and deriving the maximum heating load and energy values required for crop growth by season and time, an optimal energy management plan is derived based on this.

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

Manufacturing of Lime Materials with High Specific Surface Area for Desulfurization (고비표면적 탈황용 석회소재 제조)

  • Seok-je Kwon;Young-jin Kim;Yang-soo Kim;Jun-hyung Seo;Jin-sang Cho
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2024
  • In an effort to achieve the goal of carbon neutrality, countries around the world are aiming to phase out coal-fired power plants. Due to various reasons, electricity production through coal-fired power generation and sulfur oxide (SOx) emissions are expected to continue in the future. In the South Korea, sodium bicarbonate (NaHCO3) and lime materials are used to treat SOx, and most of the sodium bicarbonate is imported. Therefore, this research was conducted to replace sodium bicarbonate by improving the physical properties of lime materials using domestic limestone. Limestone was heat-treated through a box-type electric furnace and a vertical electric furnace. Due to the structural characteristics of the vertical electric furnace, a lime material(quicklime) was possible to improve the physical properties like a specific surface area and a pore volume. Then, they were reached to 22.33 m2/g specific area and 0.14 cc/g pore volume.

A Study on the Power Supply and Demand Policy to Minimize Social Cost in Competitive Market (경쟁시장 하에서 사회적 비용을 고려한 전력수급정책 방향에 관한 연구)

  • Kwon, Byung-Hun;Song, Byung Gun;Kang, Seung-Jin
    • Environmental and Resource Economics Review
    • /
    • v.14 no.4
    • /
    • pp.817-838
    • /
    • 2005
  • In this paper, the resource adequacy as well as the optimum fuel mix is obtained by the following procedures. First, the regulation body, the government agency, determine the reliability index as well as the optimum portfolio of the fuel mix during the planning horizon. Here, the resources with the characteristics of public goods such as demand-side management, renewable resources are assigned in advance. Also, the optimum portfolio is determined by reflecting the economics, environmental characteristics, public acceptance, regional supply and demand, etc. Second, the government announces the required amount of each fuel-type new resources during the planning horizon and the market participants bid to the government based on their own estimated fixed cost. Here, the government announces the winners of the each auction by plant type and the guaranteed fixed cost is determined by the marginal auction price by plant type. Third, the energy market is run and the surplus of each plant except their cost (guaranteed fixed cost and operating cost) is withdrew by the regulatory body. Here, to induce the generators to reduce their operating cost some incentives for each generator is given based on their performance. The performance is determined by the mechanism of the performance-based regulation (PBR). Here the free-riding performance should be subtracted to guarantee the transparent competition. Although the suggested mechanism looks like very regulated one, it provides two mechanism of the competition. That is, one is in the resource construction auction and the other is in the energy spot market. Also the advantages of the proposed method are it guarantee the proper resource adequacy as well as the desired fuel mix. However, this mechanism should be sustained during the transient period of the deregulation only. Therefore, generation resource planning procedure and market mechanisms are suggested to minimize possible stranded costs.

  • PDF