• Title/Summary/Keyword: electrical runout

Search Result 10, Processing Time 0.021 seconds

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method - (자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석-)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method (적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어)

  • 노승국;경진호;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle (자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

An Experimental Study on the Runout Characteristics of Spindle State Monitoring Using an Optical Fiber Displacement Sensor (광 파이버 변위 센서를 이용한 주축 모니터링 시 나타나는 런아웃 특성에 대한 실험적 고찰)

  • 신우철;박찬규;정택구;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.472-477
    • /
    • 2003
  • Spindle state monitoring is getting more and more important according to the technology trend of spindle that is accurate and automated. Spindle state monitoring is to measure the state of rotation vibrations. The spindle rotation error motion detected by sensing device includes rotation object's unbalance, external forced vibrations, shape error of spindle, as well as measuring error of monitoring device. In this paper, we have inspected the runout characteristics. Also, we introduce the way to exclude the runout element that appear while you monitor a spindle state.

  • PDF

Analysis of Perturbation Effect for Satellites (인공위성의 섭동력 영향분석)

  • 박수홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.229-232
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50,000 rpm.

  • PDF

Analysis and Design of Diaphragm-type Air Braking System for Train (철도차량의 막판식 공기제동시스템의 해석 및 설계)

  • 노진환;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.605-608
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and ed nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50,000 rpm.

  • PDF

Runout Control of a Magnetically Suspended Grinding Spindle (자기베어링으로 지지된 연삭 스핀들의 런아웃 제어)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1011-1015
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. The adaptive feedforward method based on LMS algorithm is discussed to compensate output and input disturbances, and investigated its effectiveness by numerical simulation. The feedforward control reduced external excitation and rotational error for specified frequency. The interpolation method using impulse function for cancelling the electrical 'uncut is studied. These methods show their effectiveness for the rotational accuracy of the improving magnetic bearing spindle through some simulation results of the rotational error decreased by them.

  • PDF

원통형 커패시턴스 센서를 이용한 초정밀 공기 주축의 회전오차 측정

  • 김해일;박상신;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.637-642
    • /
    • 1995
  • For measuring the error motion of ultra-precision spindle, eliminating the geometric errors is a must. Unless it is achieved, geometric errors will be dominant in data. Here, the roundness error and alignment error between spindle and sensor are to be removed. That's because typical error range of such spindle is muchless than geometric one. A capacitive transducer of cylidricalshape was developed, which takes full advantage of the spatial-averaging effect by using large area compared tpo the geometric error. This idea was first proposed by Chapman and here it is modified for better performance with nomical gap of 50 .mu. m and with newly designed guards which encompass the respective sensor to rectify the electrical field distribution in good shape. The measurement system is made to get the orbit of Ultra-Precision Air Spindle which is supposed to have its runout under 1 .mu. m. The Calibration data of this sensor is presented and the spindle orbit from 2000rpm to 5500rpm is showed. It is quite reasonable to use this sensor in the range of 60 .mu. m with an accuracy of several tens of nm.

The Numerical Analysis of Spindle Motor Bearing Composed of Herringbone Groove Journal and Spiral Groove Thrust Bearing

  • Oh, Sang-Man;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 2001
  • Ball bearings have been widely used for the spindle motor bearing in various kinds of information storage devices. Recently many researchers have been trying to replace ball bearings with fluid film bearings because of their superior NRRO(non-repeatable runout) characteristics. In this study, a numerical analysis has been conducted for the complicate bearing system composed of herringbone groove journal bearing and spiral groove thrust bearing for the spindle motor of the information storage device. At first, spindle motor bearing is modeled as journal bearing part and thrust bearing part separately, and then observed various influences of geometric parameters. Previous studies had considered only the translational motion of the journal bearing. However, this study takes the additional 2-degree of freedom rotation into consideration to attempt to describe the real motion of the spindle bearing. As a result, rotational stiffness coefficients and rotational damping coefficients are obtained. In addition, a spindle bearing system made up of four bearings is modeled and interpreted at once and coefficients of dynamic characteristics of each bearing are obtained. Finally, an eigen analysis of bearing system is made with these results. Through this analysis, it is possible to estimate an unstable condition of the system for given geometric parameters and to propose a method which is able to avoid the unstable condition by a proper adjustment of geometric parameters.

  • PDF