• Title/Summary/Keyword: electrical resistivity survey method

Search Result 105, Processing Time 0.026 seconds

Application of Geophysical Prospecting to Site Assessment of Waste Landfill (매립지 오염평가를 위한 물리탐사의 적용사례)

  • Lee, Cheol-Hyo;Park, Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.104-121
    • /
    • 2001
  • Recently, the pollution of soil and groundwater becomes a serious social problem, and geophysical exploration methods have been introduced as a remedial investigation method of subsurface. Digital technologies such as personal computer have revolutionized our ability to acquire large volume of data in a short term, and to produce more reliable results for subsurface image. Also, color graphics easily visualizes the survey results in a more understandable manner, and it is widely used for not only characterizing the contaminated subsurface but also monitoring contaminant and remedial process. In this paper, electrical resistivity and electromagnetic (EM) surveys were carried out in order to understand characteristics of waste landfills, and the applicability of geophysical prospecting to site assessment of waste landfill was also tested. According to the result, electrical resistivity and electromagnetic (EM) surveys were effective in estimating distribution of the leachate plume.

  • PDF

A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data (시추자료와 물리탐사자료의 복합해석을 통한 3차원 광체 모델링 연구)

  • Noh, Myounggun;Oh, Seokhoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.257-267
    • /
    • 2013
  • 3-D ore modeling was performed to understand the configuration of ore bodies by integrated analysis of borehole and geophysical data in iron-mine area. Five representative indices of rocks were designated, which were obtained from geological survey and borehole. The five indices of rocks were geostatistically simulated by Sequential Indicator Simulation method to delineate boundary of the ore bodies. And Ordinary Kriging and Sequential Gaussian Simulation was applied to make secondary information using resistivity data from magnetotellurics and DC resistivity survey, and this information was used for simple kriging with local varying means, one of integrated kriging techniques. From the correlation analysis between each properties, it was found that high grade of ore is characterized by increased density, whereas the electrical resistivity decreases. With the integrated results of geophysical and borehole data, it was also found that the real configuration of ore body was similar to the modeled result and information about ore grade in 3-D space was obtained.

A Study on the Possibility of Construction Supervision by Geophysical Prospecting (지구 물리탐사에 의한 시공감리성 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.165-174
    • /
    • 1997
  • It is not possible to define the earth's interior because of it complicity. However, it can be interpreted directly and/ or indirectly. Geophysics is the subject of this study. To study the possibility of construction supervision by geophysical method, geophysical prospecting was performed and studied at the SamYang pumping well area in Cheju Island, where, although underground dam was constructed, the saline water invade the pumping well area. This study focuses on the construction supervision by electrical measurements. Two electric resistivity survey lines are installed in the pumping well site, and at each line electric survey was conducted at ebb and flow tides. To increase the data quality SP (self-potential) survey was also performed. As a result the geophysical exploration methods explained the defect of construction well, and It shows that geophysical probe can be a useful tool for the construction supervision.

  • PDF

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Development of Data Analysis and Interpretation Methods for a Hybrid-type Unmanned Aircraft Electromagnetic System (하이브리드형 무인 항공 전자탐사시스템 자료의 분석 및 해석기술 개발)

  • Kim, Young Su;Kang, Hyeonwoo;Bang, Minkyu;Seol, Soon Jee;Kim, Bona
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.26-37
    • /
    • 2022
  • Recently, multiple methods using small aircraft for geophysical exploration have been suggested as a result of the development of information and communication technology. In this study, we introduce the hybrid unmanned aircraft electromagnetic system of the Korea Institute of Geosciences and Mineral resources, which is under development. Additionally, data processing and interpretation methods are suggested via the analysis of datasets obtained using the system under development to verify the system. Because the system uses a three-component receiver hanging from a drone, the effects of rotation on the obtained data are significant and were therefore corrected using a rotation matrix. During the survey, the heights of the source and the receiver and their offsets vary in real time and the measured data are contaminated with noise. The noise makes it difficult to interpret the data using the conventional method. Therefore, we developed a recurrent neural network (RNN) model to enable rapid predictions of the apparent resistivity using magnetic field data. Field data noise is included in the training datasets of the RNN model to improve its performance on noise-contaminated field data. Compared with the results of the electrical resistivity survey, the trained RNN model predicted similar apparent resistivities for the test field dataset.

Application of Spectral Induced Polarization Method for Skarn Metallic Deposits Exploration (스카른 금속광상 탐사를 위한 광대역 유도분극법 적용성)

  • Park, Samgyu;Shin, Seung Wook;Son, Jeong-Sul;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2016
  • The development of more advanced geophysical exploration techniques is necessary because the orebodies as yet discovered are increasingly changing in characteristics from shallow/high-grade to deep/low-grade. In this work, laboratory measurement of physical properties of rock samples and a field survey and interpretation of spectral induced polarization (SIP) have been conducted in a skarn metallic deposit, Gagok mine. The purpose of this study is that the applicability of SIP in the exploration of skarn metallic deposits is verified by the comprehensive interpretation between SIP characteristics of rocks obtained from the laboratory measurements and inverted survey results from the field data. In order to understand the SIP characteristics of each lithology, the data of eighty nine rock samples utilized in the previous studies were revaluated. The field survey was carried out using frequency of 0.25 Hz along a survey line designed for intersecting lithological boundaries and evaluating mineralized zones. The mineralized rocks were more conductive (low-resistivity) and capacitive (high-chargeability or strong-phase) than other rocks. Thus, SIP can be one of the very useful tools for the mineral exploration of the skarn deposits.

Investigation of Indicator Kriging for Evaluating Proper Rock Mass Classification based on Electrical Resistivity and RMR Correlation Analysis (RMR과 전기비저항의 상관성 해석에 기초하여 지시크리깅을 적용한 최적 암반 분류 기법 고찰)

  • Lee, Kyung-Ju;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2009
  • In this study geostatistical technique using indicator kriging was performed to evaluate the optimal rock mass classification by integrating the various geophysical information such as borehole data and geophysical data. To get the optimal kriging result, it is necessary to devise the suitable technique to integrate the hard (borehole) and soft (geophysical) data effectively. Also, the model parameters of the variogram must be determined as a priori procedure. Iterative non-linear inversion method was implemented to determine the model parameters of theoretical variogram. To verify the algorithm, behaviour of object function and precision of convergence were investigated, revealing that gradient of the range is extremely small. This algorithm for the field data was applied to a mountainous area planned for a large-scale tunneling construction. As for a soft data, resistivity information from AMT survey is incorporated with RMR information from borehole data, a sort of hard data. Finally, RMR profiles were constructed and attempted to be interpreted at the tunnel elevation and the upper 1D level.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Induced Polarization Surveys of Contaminants and Introduction to Case Studies (오염원에 대한 유도분극탐사 반응 및 사례 소개)

  • Kim, Bitnarae;Caesary, Desy;Yu, Huieun;Cho, AHyun;Song, Seo Young;Cho, Sung Oh;Joung, Inseok;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.86-100
    • /
    • 2020
  • Analyzing and monitoring environmental contaminants based on geophysical exploration techniques have become important and it is now widely applied to delineate spatial distribution geophysical characteristics in wide area. Among the techniques, induced polarization (IP) method, which measures polarization effects on electrical potential distribution, has drawn much attention as an effective tool for environmental monitoring since IP is sensitive to changes in biochemical reactions. However, various reactions stemming from the presence of multiple contaminants have greatly enhanced heterogeneity of polluted sites to result in highly variable electrical characteristics of the site. Those contaminants influence chemical and physical state of soil and groundwater to alter electrical double layer, which in turn influences polarization of the media. Since biochemical reactions between microbes and contaminants result in various IP effects, IP laboratory experiments were conducted to investigate IP responses of the contaminated soil samples under various conditions. Field IP surveys can delineate the spatial distribution of contamination, while providing additional information about electrical properties of a target medium, together with DC resistivity. Reviewing IP effects of contaminants as well as IP surveys can serve as a good starting point for the application of IP survey in site assessment for environmental remediation.

GEOPHYSICAL EXPLORATION FOR THE SITE CHARACTERISTICS OF THE WESTERN THREE-STORY STONE PAGODA IN GAMEUM TEMPLE ( 감은사지 3층석탑(서탑)의 지반 특성을 위한 지구물리탐사)

  • Seo,Man-Cheol;Choe,Hui-Su;Lee,Chan-Hui;O,Jin-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Twin stone pagodas of the ruins of Kamunsa temple at Kyongju city, Kyungsangbukdo were believed to be built in 682 during the Unified Shilla Kingdom. The 13.4-m-high granodiolite pagodas with the base of 6.78 m x 4.4 m are the largest three-story stone pagoda in Korea. The western pagoda which was re-organized in 1959 is observed to be on the process of severe weathering. Also, some stone contacts are represented by the shape of sharp chevron, which is probably caused by the uneven loading due to the structural unbalance. For the structure-safety diagnosis of the western pagoda, it is necessary to understand its site characteristics and surrounding subsurface environment. Combined geophysical survey such as seismic and resistivity methods was carried out around the western pagoda. The range of 55∼350 Ωm is shown around the pagoda from the electrical resistivity mapping by the Wenner method. The higher resistivities occur the southwestern area, while the lower (<100 Ωm) values indicating the weaker subsurface appear to be on the northeastern area. This result coincides with the measurement of a leaning angle of the pagoda. Along 6 seismic lines, about 3-m-thick uppermost section around the pagoda shows the P-wave velocity of 200∼700 m/s from the refraction survey. Based on the integrated geophysical survey, the foundation of the pagoda is estimated to be in the form of 11-m-side square down to the depth of 3 m.

  • PDF