• Title/Summary/Keyword: electrical properties

Search Result 13,257, Processing Time 0.046 seconds

Effect of Drip Irrigation Level on Soil Salinity and Growth of Broccoli (Brassica oleracea L. var. italica) in Saemangeum Reclaimed Tidal Land (새만금간척지에서 점적관수량이 토양염농도와 녹색꽃양배추의 생육에 미치는 영향)

  • Bae, Huisu;Hwang, Jaebok;Kim, Haksin;Gu, Bonil;Choi, Inbae;Park, Taeseon;Park, Hongkyu;Lee, Suhwan;Oh, Yangyeol;Lee, Sanghun;Lee, Geonhwi
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • The objective of this study was to investigate the effect of drip irrigation level on soil salinity and growth of broccoli (Brassica oleracea L. var. italica) at the 'Saemangeum Reclaimed Tidal Land' from April to June, 2015. Drip irrigation was conducted at 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ level for reduction of resalinization in the plastic vinyl house using 10cm spacing drip irrigation tape. At harvesting stage, the average EC of surface soil was $10.9dS{\cdot}m^{-1}$ for $1.5mm{\cdot}day^{-1}$, $11.5dS{\cdot}m^{-1}$ for $3.0mm{\cdot}day^{-1}$ and $5.1dS{\cdot}m^{-1}$ for $6.0mm{\cdot}day^{-1}$ and was significantly reduced by 52~56% in $6.0mm{\cdot}day^{-1}$ treated plot compared to those in 1.5 and $3.0mm{\cdot}day^{-1}$ plots. The fresh bud weights of 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ treatment plots were 60.9, 129.1 and $371.3g{\cdot}plant^{-1}$, respectively. The estimated soil EC for 50% yield reduction was $7.6dS{\cdot}m^{-1}$ and the desalinization depth by drip irrigation was 30~40cm in soil profile. The total amount of drip irrigation water was estimated to be 422mm and the daily drip irrigation level was $6.0mm{\cdot}day^{-1}$ for the prevention of resalinization during the broccoli growing period at the 'Saemangeum Reclaimed Tidal Land'. Our results suggested that drip irrigation shows effectiveness on the lowering the soil salinity according to the drip irrigation quantity but it needs more research on this study because dynamics of salts in soil can vary with many factors such as soil physico-chemical properties and seasonal climate.

The Effect of Rainfall, Irrigation and Fertilizer Application on Water Properties of Pond in Golf Course (골프코스에서 강수량, 관추량 및 시비관리가 연못의 수질 변화에 미치는 영향)

  • Kim, Young-Sun;Ham, Suon-Kyu
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was conducted to investigate the effect of rainfall, irrigation and fertilizer application on water qualities of pond in golf course from May in 2007 year to November in 2008 year. For survey of water quality, it was sampled at $10{\sim}12$ sites(irrigation site 2, drainage site 3, and hazard site $5{\sim}7$) of SKY72 G.C and evaluated with analysis items such as pH, electrical conductivity(EC), DO, SS, T-N, $PO_4$-P, K, Ca, Mg, Na, SAR, BOD and COD. Results obtained were summarized as follows: The value of pH, EC, DO, T-N, P04-P, K, Ca, Mg, Na and SAR was in dry season, but those of SS, BOD and COD in the rainy season. N and P concentration of pond water showed $1.2{\sim}28.8mg/L$ and $0.005{\sim}0.172mg/L$, respectively, and so it was higher than eutrophication level of lakes and marshes recommended by the Ministry of Environment in Korea. As a reault of correlation analysis, EC in the water was significantly(P<0.01) related items such as K, Ca, Mg, Na, SAR and salinity, and SS significantly(P<0.05) BOD and COD. In comparison with a corelation between respective analysis items and rainfall amount, SAR was significantly(P<0.01) positive but T-N negative(P<0.01). As compared with corelation between respective items and irrigation amount, pH was significantly(P<0.01) positive but T-N(P<0.05) and BOD(P<0.01) negative. When it was applied to N, $P_2O_5$ and $K_2O$ in golf course, N and $K_2O$ significantly affected water qualities of pond(P<0.01). These results suggested that a pond water in golf course was affected by the fertilizer application, rainfall and irrigation and EC was adequate monitoring indicator for the evaluating water quality of pond by chemicals influent.

Ecological Characteristics and Management Plan of Geumdangsil Pine Forest of Yecheon (예천 금당실 송림의 생태적 특성 및 관리방안)

  • Lee, Soo-Dong;Lee, Chan;Kim, Donwook;Kim, Jisuk
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.6
    • /
    • pp.718-732
    • /
    • 2013
  • The purpose of this study was to provide data for the basic research to found the effective conservation and management plan for the Geumdangsil Pine Forest of Yecheon designated as Natural Monument No. 469. Furthermore, this paper suggest efficient sustainable forest preservation and using. In order to achieve the sustainable forest preservation, this study was to analyse topography, land use, tree growth, soil environment, forest usage and forest management, etc. According to analysis the results, the site area is located in the flatlands where is from 130 to 140 m above sea level. The around forest was transformed into agricultural land. The 565 individuals of Pinus densiflora grows in the forest, whereas, 25 trees was cut down or died. There are signs of 25 stumps. The most of 565 trees' diameter at breast height(DBH) was centerized between 30 cm and 50 cm, moreover, the average life expectancy of trees were 85.4 years. The oldest age of tree was estimated to be 200 years. The Sample trees of rate of branch growth is from 4.3 cm to 5.1 cm per year. The middle branch which is more vigorous growth grow 24.2 cm for 3 years. Moreover, the result of soil physico-chemical properties analysis of 7 plots, 4 categories which is soil organic matter, total nitrogen, available phosphoric acid, specific electrical conductance was generally good, however, the 2 categories which is soil pH, exchangeable cation needed improvement. Currently, the site was not pressured by facilities and usage, however, there might be threaten by agriculture such as encroaching on forest. Therefore, there should establish comprehensive ecosystem management such as facility management, visitors management and operation management In this paper considered 4 fields that is ecosystem management, facility management, visitors management and operation management for sustainable management.

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.

Fabrication and Characterization of $CuInSe_2$Thin Films from $In_2Se_3$ and$Cu_2Se$Precursors ($In_2Se_3$$Cu_2Se$를 이용한 $CuInSe_2$박막제조 및 특성분석)

  • Heo, Gyeong-Jae;Gwon, Se-Han;Song, Jin-Su;An, Byeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.988-996
    • /
    • 1995
  • CuInSe$_2$this films as a light absorber layer were fabricated by vacuum evaporation using In$_2$Se$_3$and Cu$_2$Se precursors and their properties were analyzed. Indium selenide films of 0.5${\mu}{\textrm}{m}$ thickness were first deposited by vacuum evaporation of In$_2$Se$_3$ on a Corning 7059 glass substrate. The films deposited at suscepor temperature of 40$0^{\circ}C$ showed a flat surface morphology with densely Packed grain structure. CuInSe$_2$films directly formed by evaporating Cu$_2$Se on the predeposited In$_2$Se$_2$films also showed a very flat surface when the susceptor temperature was $700^{\circ}C$. Cu$_2$Se, a second phase in the CuInSe$_2$film, was removed by evaporating additional In$_2$Se$_3$on the CuInSe$_2$film at $700^{\circ}C$. The grain size of 1.2${\mu}{\textrm}{m}$ thick CuInSe$_2$, film was about 2${\mu}{\textrm}{m}$ and the film had a (112) preferred orientation. As the amount of deposited In$_2$Se$_3$increased, the electrical resistivity of CuInSe$_2$films increased because of the decrease of hole concentration. But the optical band gap was almost constant at the value of 1.04eV, The CuInSe$_2$film grown on a Mo/glass substrate had a similar smooth microstructure compared to that on a glass substrate. A solar cell with ZnO/CdS/CuInSe$_2$/Mo structure may be realized based on the above CuInSe$_2$films.

  • PDF

Electrical properties of metal-oxide-semiconductor structures containing Si nanocrystals fabricated by rapid thermal oxidation process (급속열처리산화법으로 형성시킨 $SiO_2$/나노결정 Si의 전기적 특성 연구)

  • Kim, Yong;Park, Kyung-Hwa;Jung, Tae-Hoon;Park, Hong-Jun;Lee, Jae-Yeol;Choi, Won-Chul;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Metal oxide semiconductor (MOS) structures containing nanocrystals are fabricated by using rapid thermal oxidations of amorphous silicon films. The amorphous films are deposited either by electron beam deposition method or by electron beam deposition assisted by Ar ion beam during deposition. Post oxidation of e-beam deposited film results in relatively small hysteresis of capacitance-voltage (C-V) and the flat band voltage shift, $\DeltaV_{FB}$ is less than 1V indicative of the formation of low density nanocrystals in $SiO_2$ near $SiO_2$/Si interface. By contrast, we observe very large hysteresis in C-V characteristics for oxidized ion-beam assisted e-beam deposited sample. The flat band voltage shift is larger than 22V and the hysteresis becomes even broader as increasing injection times of holes at accumulation condition and electrons at inversion condition. The result indicates the formation of slow traps in $SiO_2$ near $SiO_2$/Si interface which might be related to large density nanocrystals. Roughly estimated trap density is $1{\times}10^{13}cm^{-2}$. Such a large hysteresis may be explained in terms of the activation of adatom migration by Ar ion during deposition. The activated migration may increase nucleation rate of Si nuclei in amorphous Si matrix. During post oxidation process, nuclei grow into nanocrystals. Therefore, ion beam assistance during deposition may be very feasible for MOS structure containing nanocrystals with large density which is a basic building block for single electron memory device.

  • PDF

Fertilizer Management Practices with Rice Straw Application for Improving Soil Quality in Watermelon Monoculture Greenhouse Plots (시비관리 및 생 볏짚 처리가 수박연작 시설재배지 토양에 미치는 영향)

  • Ahn, Byung-Koo;Lee, Young-Han;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • Indoor cultivation plots for watermelon plant mostly have salt-accumulation problem because of continuous cropping especially with the heavy applications of chemical fertilizers. Thus, this study was conducted to investigate selected soil properties and watermelon growth condition as affected by the application of different farming practices in the salt-affected soils of greenhouse plots used for continuous watermelon production. Five different practice conditions in the experimental plots were applied, 1) a conventional farming practice (CFP), 2) a nitrogen-phosphorus-potassium (NPK) fertilizer management practice (FMP), and 3) the FMP with different amounts (5, 10, and 15 ton $ha^{-1}$)of fresh rice straw treatments (FMP-RS), for three years of study. As comparing with CFP plots, soil organic matter content gradually increased during the experimental years, whereas it decreased in the FMP only plot. Soil pH was not changed in the CFP and FMP plot, but it declined in the FMP-RS plots; however, it increased again from the third year in the FMP-RS plots with applying 10 and 15 ton $ha^{-1}$ of RS treatments. The concentrations of exchangeable cations, $Ca^{2+}$ and $Mg^{2+}$, except $K^+$, and water-soluble anions, ${NO_3}^-$, $Cl^-$, ${SO_4}^{2-}$ and ${PO_4}^{3-}$, markedly decreased in FMP and FMP-RS plots. In particular, the application of rice straw tended to significantly decrease the ion concentrations, especially most anions, in the first year, but there was no more decrease in the second and third study years. With relation to the ion concentrations, the changes of electrical conductivity (EC) after applying the management practices showed very similar to those of the ion concentrations. In addition, incidence of withered watermelon plant after applying the management practices dramatically declined from approximately 20% in the CFP plot to 3.5% in the FMP-RS plots. Water melon fruit weight was also improved by the management practices, especially FMP-RS. Therefore, the fertilizer and/or fresh rice straw application management practices are beneficial to improve salt-affected soils and watermelon plant growth condition.

The Ecological Characteristics and Conservation Counterplan of Menyanthes trifoliata Habitat in Floating Mat in Korean East Coastal Lagoon, Sunyoodam (조름나물이 서식하는 동해안 석호 습지인 선유담의 생태적 특성 및 보전방안)

  • Kim, Heung-Tae;Lee, Gwang-Moon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The purpose of this study is to investigate the properties of Menyanthes trifoliata habitat in coastal lagoons. To characterize plant composition in the habitats in the lagoon, the plot sampling method was applied. The depths of water and floating mat were measured. Surface water quality factors including pH, electrical conductivity (EC), dissolved oxygen (DO), and total dissolved solids (TDS) were measured in the sites. Phosphate, nitrate, ammonium, and major cations were measured in laboratory. The wetland has 78 taxa of wetland plants. The average coverage and density of M. trifoliata was 62.6% and $71.2/m^2$, respectively and Phragmites australis is important associate in Sunyoodam lagoon. The average depths of floating mats were 26.5cm in M. trifoliata and 68.9cm in the P. australis-M. trifoliata communities, and the water depth below the mat was 106.5cm and 17.7cm, respectively. The values of pH, DO, EC and TDS in the water were 5.06, 46.1%, 59.4 ${\mu}s/cm$, and 29.3 mg/L, respectively. The concentrations of phosphate, nitrate, and ammonium showed 47.2, 9321, and 15.9 ${\mu}g/L$, respectively. The concentrations of Ca, K, Na, and Mg had 11.1, 1.5, 15.1, and 11.3 mg/L, respectively. The habitats of M. trifoliata in the lagoon corresponds to a kind of lowland communities in Hewett's classification. To conserve the habitats of M. trifoliata in Sunyoodam lagoon, the supply of open water area, the construction of observation deck, and the block of inflow from the surrounding paddy fields are needed in the future.

Effects of Compressed Expansion Rice Hull Application and Drip Irrigation on the Alleviation of Salt Accumulation in the Plastic Film House Soil (팽화왕겨 처리와 점적관개에 의한 염류집적 시설재배지 염류경감 효과)

  • Cho, Kwang-Rae;Kang, Chang-Sung;Won, Tae-Jin;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.372-379
    • /
    • 2006
  • This study was carried out to improve chemical properties of salt-accumulated plastic film house soil. Compressed expansion rice hull was applied at 0, 2.5, 5.0, $7.5Mg\;ha^{-1}$, and drip irrigation was initiated at -33 kilopascals (kPa) of soil water potential and ceased adjusted up to -10 kPa. Another treatment was the application of inflated rice hull at $5.0Mg\;ha^{-1}$ with drip irrigation starting at soil water potential -20 kPa and adjusted to -10 kPa. Lettuce(Lactuca sativa L.) was cultivated at sandy loam soil with $5.1dS\;m^{-1}$ of electrical conductivity (EC). $EC_w$(1:5) of plots treated with $5.0Mg\;ha^{-1}$ of inflated rice hull and irrigated at the point of -20 kPa and -33 kPa of soil water potential was reduced by 26% and 24% less than untreated control plot, respectively. Soil $EC_w$(1:5) has close relationship with $Cl^-$ as well as $NO_3{^-}-N$ and $SO{_4}^{2-}$ in the soil. Total nitrogen in leaf of lettuce was deficient in the earlier growth stage. The yield of lettuce increased by 6% by the application of inflated rice hull of $5.0Mg\;ha^{-1}$ with drip irrigation starting at -33 kPa of soil water potential. It decreased 4% when the drip irrigation was stated at -20 kPa of soil water potential. The amount of water used for irrigation was reduced with the increasing application of inflated rice hull. The watering initiated at the point of -33 kPa was more economical compared with starting at -20 kPa.

Assessing Effects of Calcium Chloride (CaCl2) Deicing Salt on Salt Tolerance of Miscanthus sinensis and Leachate Characterizations (염화칼슘 제설제 처리농도에 따른 참억새의 내염성 및 침출수 평가)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.4
    • /
    • pp.61-67
    • /
    • 2019
  • The purpose of this research is to evaluate the salt tolerance of the Miscanthus sinensis and to characterize the content of pigments in the leachate in relation to calcium chloride ($CaCl_2$) deicing salt. Miscanthus sinensis were cultured at five different concentrations of calcium chloride deicing salt, 0, 1, 2, 5, and $10g{\cdot}L^{-1}$ (referred to Cont. C1, C2, C5, and C10) for four months. The salt tolerance and leachate while growing Miscanthus sinensis on soil which was artificially contaminated by calcium chloride deicing salt. Soil chemical properties (pH, E.C., $Ca^{2+}$, $Na^+$, $K^+$, and $Mg^{2+}$) and plant growth parameters (plant height, leaf length, leaf width, number of leaves, shoot fresh weight, root fresh weight, shoot dry weight, an root dry weight) were evaluated. Soil pH decreased, while electrical conductivity significantly decreased ($p{\leq}0.05$) with a higher concentration of deicing salt $0g{\cdot}L^{-1}$ (Cont.). The increase in the concentration of chloride-based exchangeable cations, along with the increase in the deicing salt treatments, were observed in $Ca^{2+}$ > $Na^+$ > $K^+$ > $Mg^{2+}$. Notably the $Ca^{2+}$ exchangeable cations were 83~90% higher than the others. The growth of Miscanthus sinensis significantly increased ($p{\leq}0.05$) with the concentration of deicing salt higher than $1g{\cdot}L^{-1}$ (C1) when compared to 0 g/L (Cont.), except for the $10g{\cdot}L^{-1}$ (C10) treatment. The results determined that the contamination of soil by deicing salt could negatively impact the soil and Miscanthus sinensis was a tolerant species for the deicing salts. Further research will be focused on soil improvement additives and the stable stimulated plant growth of Miscanthus sinensis and a formulation on that basis for the soil-plant continuum.