• Title/Summary/Keyword: electrical conductivity test

Search Result 241, Processing Time 0.027 seconds

Comparisons of Electrical Conductivity between Polyester/Polyurethane and Nylon/Polyurethane Woven or Knitted Fabrics with Silver Paste Patterns in Elongation-Strain test (폴리에스터/폴리우레탄 및 나일론/폴리우레탄에 은 문양을 입힌 편직물의 신장-변형 시 전기 전도도 비교)

  • Kim, Hyejin;Yun, Changsang;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2019
  • The objective of this study was to investigate electrical conductivity of fabrics from polyester (PET) and Nylon (N) containing polyurethane (PU), with silver paste patterns screen-stenciled in three directions. The PET/PU and N/PU fabrics knitted or woven were uniaxially strain-recovered up to 22.5% in three times when each change in electrical resistance was simultaneously measured. This study established four variables that complexly affected electrical conductivity of these specimens; fabric structures, components, cover factors, and the percolation of silver particles. The woven or knitted fabric structures did not distinctively cause the changes in electrical resistance, however, the woven fabrics with the diagonal patterns showed their relatively high electrical resistance. The PET/PU fabrics with increasing the PET proportion generally presented the opposite propensity to its electrical conductivity. The changes in electric resistance of the PET/PU 85/15 2/1 twill and double plain fabrics instantaneously responded to the rate of elongation. The PET/PU group exhibited a reverse correlation between its cover factor and electrical resistivity. The highest electrical conductivity of the PET/PU 95/5 interlock fabric, with very few fluctuations, was attributed to the deep percolation of the silver particles that bridged the gaps between one loop and another. On the other hand, the occurrence of the silver cracks along with the elongated direction led to the immeasurably high change in electrical resistance as the strain increased.

A QUANTITATIVE ANALYSIS ABOUT MICROLEAKAGE OF ALL-IN-ONE ADHESIVES (올인원 접착제의 미세누출에 관한 정량적 분석)

  • Kang, Yong-Hee;Shin, Soo-Il;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • All-in-one adhesives were recently developed for reducing the technique sensitivity and chair time, but lots of concerns were made on bondability, longevity, and microleakage. The object of this study was to evaluate microleakage and marginal quality of all-in-one adhesives using electrochemical method and SEM analysis quantitatively. After making Class V cavities, they were bulk filled with Heliomolar(#A1 after surface treatment with three adhesives: Adper Prompt (Group A), One up bond F (Group O), Xeno III (Group X) Electrical conductivity (microamphere, ${\mu}A$) was checked two times: before and after cavity filling. Percentage of leaky margin was estimated from SEM image (${\times}1,000$). The data were statistically analysed: ANOVA and Paired T test for electrical conductivity, Kruskal-Wallis and Mann-Whitney test for marginal quality, Spearman s rho test for checking of relationships between 2 methods. The result were as follows: 1. There was no difference in microleakage between adhesive systems and every specimen showed some of microleakage after filling. 2. Microleakage was reduced about 70% with composite resin filling. 3. Marginal quality was the best in group A. decreasing among groups in the following order: group O, followed by group X. There were significant differences between group A and group X (p=0.015), and between group 0 and group X (p=0.019). 4. There was no relationship between the microleakage measured by electrochemical method and marginal quality measured by SEM analysis. Within the results of this study, there was no difference in microleakage among groups by electrical conductivity. However, significant difference in marginal quality was seen among groups. It was believed that these dissimilar results might be induced because of their own characteristics. Analysis of microleakage needs various methods for accuracy.

Comparative analysis of physicochemical properties of root perforation sealer materials

  • Orcati Dorileo, Maura Cristiane Goncales;Pedro, Fabio Luis Miranda;Bandeca, Matheus Coelho;Guedes, Orlando Aguirre;Villa, Ricardo Dalla;Borges, Alvaro Henrique
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • Objectives: This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials. Materials and Methods: For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (${\alpha}$ = 0.05). Results: The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO ($\hat{A}$ngelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge. Conclusions: On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses.

A study on electrical and mechanical properties and press formability of a Cu/Ag composite sheet (Cu/Ag 복합판재의 전기/기계적 성질 및 프레스 성형성에 관한 연구)

  • Shin, Je-Sik
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • In this study, a novel Cu composite sheet with embedded high electric conduction path was developed as another alternative for the interconnect materials possessing high electrical conductivity as well as high strength. The Cu composite sheet was fabricated by forming Ag conduction paths not within the interior but on the surface of a high strength Cu substrate by damascene electroplating process. As a result, the electrical conductivity increased by 40% thanks to mesh type Ag conduction paths, while the ultimate tensile strength decreased by 20%. The interfacial fracture resistance of Cu composite sheet prepared by damascene electroplating increased by above 50 times compared to Cu composite sheet by conventional electroplating. For feasibility test for practical application, a leadframe for LED module was manufactured by a progressive blanking and piercing processes, and the blanked surface profile was evaluated as a function of the volume fraction of Ag conduction paths. As Ag conduction path became finer, pressing formability improved.

  • PDF

Soundness evaluation of friction stir welded A2024 alloy by non-destructive test (비파괴검사에 의한 A2024 마찰교반용접부의 건전성 평가)

  • Ko, Young-Bong;Kim, Gi-Beom;Park, Kyeung-Chae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.135-143
    • /
    • 2013
  • Friction Stir Welding (FSW) was developed, it is successfully commercialized in the field of transportation vehicles. In this study, we analyzed the defects of A2024-T4 alloy using non-destructive test of radiograph, ultrasonic, electrical conductivity and destructive test of microstructure observation, tensile strength. As the results of experiment, mapping of defects was obtained. Fine defects which were not detected in radiograph test were detected in ultrasonic test, and it enabled efficient detection of defects by difference of sound pressure and color. The values of electrical conductivity was decreased as amount of defects was increasing. Joint efficient of defect-free weldment that found by non-destructive and destructive test was 91%. Therefore it was considered that non-destructive test of friction stir welded A2024-T4 Alloy was an efficient method.

Effects of Alloying Elements on the Properties of Fe-Cr Alloys for SOFC Interconnects (SOFC 분리판용 Fe-Cr 합금의 특성에 미치는 합금성분의 영향)

  • Kim, Do-Hyeong;Jun, Jae-Ho;Kim, Seung-Goo;Jun, Joong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.833-841
    • /
    • 2005
  • The oxidation resistance and electrical conductivity of various commercial ferritic stainless steels including STS444 were tested in an air atmosphere at $700^{\circ}C$. Crofer22 developed specially for SOFC interconnect was also examined for the aim of comparing with the test results of STS444. Although STS444 exhibited higher oxidation resistance than Corfer22, the electrical conductivity of the scale formed on Crofer22 was higher, indicating that the resistivity of scale formed on Crofer22 is much lower than that of STS444. To gain a better understanding of the relation between oxidation behavior and electrical conductivity, the oxide scales formed on STS444 and Crofer22 were analyzed in terms of the structure, composition, and phase. Consequently, the influence of alloying elements on electrical conductivity of Fe-Cr alloys was discussed.

Effect of Nickel addition in DC arc test of Cu-W electrode (Cu-W 전극의 DC Arc 시험에 있어서 Nickel 첨가 영향)

  • Kim, Bong-Seo;Chung, Hyeon-Wook;Lee, Hee-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.11-14
    • /
    • 2003
  • Sintered Cu-W has been used for the electrode of GIS for interrupting the abnormal current. In this study the effect of Ni addition in Cu-W electrode was investigated. Cu-W electrodes used contains 0.1~0.2wt% Ni and were conducted the experiments which was attacked by DC arc test (70V-70A) for 300 times periodically. As the contents of Ni in Cu-W electrode increase, the hardness and electrical conductivity were decreased. The weight change ($\Delta$mg) of electrode after DC arc test increased with increasing Ni contents and test times. The hardness and electrical conductivity of electrode after DC arc test were decreased compared with non-arc affected electrode, which was owing to the defects near surface of electrode and degradation by arc heat. It was considered that Cu in the Cu-W electrode was scattered to all directions by arc heat, therefore, the electrodes were damaged and deformed in the surface and cross-section of electrode. It is difficult to estimate directly the characteristics of Cu-W electrode for GIS related with high voltage and current from the results of DC arc test conducted in this study. However, the results of the effect of Ni addition in Cu-W electrode could be applied for the research of electrode for GIS.

  • PDF

A Study on the Characteristics of New Type of Composite Bipolar Plate for the PEM Fuel Cell (고분자전해질 연료전지용 새로운 타입의 복합재료 분리판의 특성연구)

  • Kim, Jong-Wan;Lee, Jin-Sun;Sun, Kyung-Bok;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.180-183
    • /
    • 2009
  • Composite bipolar plates offer several advantages of low cost, light weight, and ease of manufacturing compared to traditional graphite plate. However, it is difficult to achieve both high electrical conductivity and high flexural strength. In this study, the hybrid carbons filled epoxy composite bipolar plates were fabricated to test electrical conductivity and flexural properties. Graphite powders were used as the main conducting filler and continuous carbon fiber fabrics were inserted to improve the mechanical properties of the composite. This hybrid composite showed improved in-plane electrical conductivity and flexural property. The moldability of the hybrid composite was also improved comparing to the continuous prepreg composite. This study suggested that the continuous carbon fiber inserted graphite/epoxy composites can be a potential candidate material to overcome the disadvantages of conventional graphite composite or continuous prepreg composite bipolar plates.

  • PDF

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur;Kulvinder Singh
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.305-313
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Studies on the Diagnosis of Subclinical Mastitis in Cows by the Measurement of the Electrical Conductivity: 1. Comparison of Various Methods of Handling Conductivity Data with the Use of California Mastitis Test and Direct Somatic Cell Count (전기전도도(電氣傳導度) 측정(測定)에 의한 유우(乳牛) 준임상형(準臨床型) 유방염(乳房炎)의 진단(診斷)에 관한 연구(硏究) 1. 전기전도도법(電氣傳導度法)과 간접검진법(間接檢診法)(CMT 및 총체세포수(總體細胞數))과의 비교(比較))

  • Kang, Byong-kyu
    • Korean Journal of Veterinary Research
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 1984
  • A total of 466 foremilk from dairy farms in Chonnam district was examined for the subclinical mastitis over a period of one year, using a method of the electrical conductivities(EC); absolute conductivity(AC) and differential conductivity(DC) and quarter difference value(QD), in relation to the California mastitis test(CMT) and the direct somatic cell count(DSCC). The compatibility and efficiency rating between the EC values and the other screening tests was conducted. Obtained results are summarized as follows. 1. A linear relationship was found between the EC values and the CMT scores and direct somatic cell counts and it was found that electrical conductivity measurements were comparable with other screening tests for diagnosing animals with mastitis. 2. Compatibilities between the EC and CMT were 70.4% in AC, 74.6% in DC and 70.7% in QD, and that of the EC and DSCC were 53.0% in AC, 63.1% in DC and 53.2% in QD. On the other hand, relative efficiency ratings of Postle's equation between EC and CMT were 37.3% in AC, 26.5% in DC and 13.6% in QD, and that of the EC and DSCC were 33.1% in AC, 20.2% in DC and 11.9% in QD. 3. In the foremilk samples collected from damaged quarters determined by EC, the false positive rate wart higher than the false negative rate, and consequently tests of EC produced lower compatibility or efficiency rating scores. These tendencies suggested that any factors other than the mastitic condition influencing the EC values might be existed.

  • PDF