• Title/Summary/Keyword: electrical components

Search Result 2,847, Processing Time 0.028 seconds

Increase of the Voltage Rating of Resistive Type Superconducting Fault Current Limiter Using Equal Shunt Resistors (동일 병렬 저항을 이용한 초전도 저항형 한류소자 직렬연결방안 및 전압용량 증대)

  • 차상도;김혜림;심정욱;한용희;현옥배
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.327-334
    • /
    • 2003
  • We have investigated the quench behavior of the series connection of resistive type superconducting fault current limiter (SFCL) components based on YBCO films. Equal shunt resistors $R_s$ across individual SFCL components successfully produced simultaneous Quenches for 5 components in series, resulting in equal application of voltage to all components. If the two components having the highest and the lowest critical currents ($I_c$) quench safely, others quench altogether The highest shunt resistance is to guarantee the safe quenches of all components, leading to the equal voltage applications within the first half cycle after a fault in the short circuit test. The highest $R_s$ was found to be 28 [$\Omega$] for the components in the given quench environment. Considering the safe quenches and protection coordination, the optimal $R_s$ was suggested to be approximately a half of the highest $R_s$,, allowing wide selection of $R_s$ and $I_c$'s. This design provides a practical wav of connecting small SFCL components in series for high voltage application.

Intelligent Diagnosis of Broken Bars in Induction Motors Based on New Features in Vibration Spectrum

  • Sadoughi, Alireza;Ebrahimi, Mohammad;Moallem, Mehdi;Sadri, Saeid
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.228-238
    • /
    • 2008
  • Many induction motor broken bar diagnosis methods are based on evaluating special components in machine signals spectrums. Current, power, flux, etc are among these signals. Frequencies related to a broken rotor fault are slip dependent, therefore, correct diagnosis of fault - especially when obtrusive frequency components are present - depends on accurate determination of motor velocity and slip. The traditional methods typically require several sensors that should be pre-installed in some cases. This paper presents a diagnosis method based on only a vibration sensor. Motor velocity oscillation due to a broken rotor causes frequency components at twice slip frequency difference around speed frequency in vibration spectrum. Speed frequency and its harmonics as well as twice supply frequency, can easily and accurately be found in a vibration spectrum, therefore th motor slip can be computed. Now components related to rotor fault can be found. It is shown that a trained neural network - as a substitute for an expert person - can easily categorize the existence and the severity of a fault according to the features extracted from the presented method. This method requires no information about th motor internal and has been able to diagnose correctly in all the laboratory tests.

Effects of Alloying Elements on the Properties of Fe-Cr Alloys for SOFC Interconnects (SOFC 분리판용 Fe-Cr 합금의 특성에 미치는 합금성분의 영향)

  • Kim, Do-Hyeong;Jun, Jae-Ho;Kim, Seung-Goo;Jun, Joong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.833-841
    • /
    • 2005
  • The oxidation resistance and electrical conductivity of various commercial ferritic stainless steels including STS444 were tested in an air atmosphere at $700^{\circ}C$. Crofer22 developed specially for SOFC interconnect was also examined for the aim of comparing with the test results of STS444. Although STS444 exhibited higher oxidation resistance than Corfer22, the electrical conductivity of the scale formed on Crofer22 was higher, indicating that the resistivity of scale formed on Crofer22 is much lower than that of STS444. To gain a better understanding of the relation between oxidation behavior and electrical conductivity, the oxide scales formed on STS444 and Crofer22 were analyzed in terms of the structure, composition, and phase. Consequently, the influence of alloying elements on electrical conductivity of Fe-Cr alloys was discussed.

Design and Application of a Single Phase Multilevel Inverter Suitable for using as a Voltage Harmonic Source

  • Beser, Ersoy;Arifoglu, Birol;Camur, Sabri;Beser, Esra Kandemir
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • This paper presents a single phase multilevel inverter for using as a voltage harmonic source. First, a single phase multilevel inverter system is presented and the structural parts of the inverter are described. In order to obtain multilevel output voltage waveforms, a switching strategy based on calculating switching angles is explained and an improved formula for determining switching angles is given. Simulation and experimental results of multilevel voltage waveforms are given for 15, 31 and 127 levels. The proposed topology does not only produce output voltages with low THD values. It also produces the required harmonic components on the output voltage. For this purpose, equations for switching angles are constituted and the switching functions are obtained. These angles control the output voltage as well as provide the required specific harmonics. The proposed inverter structure is simulated for various functions with the required harmonic components. The THD values of the output voltage waves are calculated. The simulated functions are also realized by the proposed inverter structure. By using a harmonic analyzer, the harmonic spectrums, which belong to the output voltage forms, are found and the THD values are measured. Simulation and experimental results are given for the specific functions. The proposed topology produces perfectly suitable results for obtaining the specific harmonic components. Therefore, it is possible to use the structure as a voltage harmonic source in various applications.

Effect of Si Addition on Microstructure, Mechanical Properties and Thermal Conductivity of the Extruded Al 6013 Alloy Systems

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Lee, Byoung-Kwon;Ko, Eun-Chan;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.403-407
    • /
    • 2022
  • This research investigated the effect of Si addition on the microstructure, mechanical properties, electric and thermal conductivity of as-extruded Al 6013 alloys. As the content of Si increased, the area fraction of the second phase increased. As the Si content increased, the average grain size decreased remarkably, from 182 (no Si addition) to 142 (1.5Si), 78 (3.0Si) and 77 ㎛ (4.5Si) due to dynamic recrystallization by the dispersed second particles in the aluminum matrix during the hot extrusion. As the Si content increased, the yield strength and ultimate tensile strength increased. The maximum values of yield strength and ultimate tensile strength were 224 MPa and 103 MPa for the 6013-4.5Si alloy. As the amount of Si added increased, the electrical and thermal conductivity decreased. The electrical and thermal conductivity of the Al6013-4.5Si alloy were 44.0 % IACS and 165.0 W/mK, respectively. The addition of Si to Al 6013 alloy had a significant effect on its thermal conductivity and mechanical properties.

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage with Harmonics Components (고조파 성분이 포함된 전압 불평형 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.134-140
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are usually balanced and connected to three power systems. However, in the user power distribution systems, partial loads are single & three phase and unbalanced, generating voltage unbalance by the impedance mismatching. Voltage unbalance has detrimental effects on three-phase induction motors, including over heating, line-current unbalance, derating, torque pulsation, low efficiency, etc. This paper presents a scheme on operation states of a three-phase induction motor under the unbalanced voltages with harmonics components. Three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting not only fundamental but also harmonics components. Harmonic components at the voltage unbalanced factor(VUF) of the three-phase source voltages can then be examined the different values of VUF on machine's operation characteristics.

A Study on the Automatic Test Strategy of the Electronic Circuit Board Using Artificial Intelligence (인공지능기법을 이용한 전자회로보오드의 자동검사전략에 대한 연구)

  • 고윤석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.671-678
    • /
    • 2003
  • This paper proposes an expert system to generate automatically the test table of test system which can highly enhance the quality and productivity of product by inspecting quickly and accurately the defect device on the electronic circuit board tested. The expert system identifies accurately the tested components and the circuit patterns by tracing automatically the connectivity of circuit from electronic circuit database. And it generates automatically the test table to detect accurately the missing components, the misplaced components, and the wrong components for analog components such as resistance, coil, condenser, diode, and transistor, based on the experience knowledge of veteran expert. It is implemented in C computer language for the purpose of the implementation of the inference engine using the dynamic memory allocation technique, the interface with the electronic circuit database and the hardware direct control. And, the validity of the builded expert system is proved by simulating for a typical electronic board model.

Experimence Study of Trace Water and Oxygen Impact on SF6 Decomposition Characteristics Under Partial Discharge

  • Zeng, Fuping;Tang, Ju;Xie, Yanbin;Zhou, Qian;Zhang, Chaohai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1786-1795
    • /
    • 2015
  • It is common practice to identify the insulation faults of GIS through monitor the contents of SF6 decomposed components. Partial discharges (PD) could lead to the decomposition of SF6 dielectric, so new reactions usually occur in the mixture of the newly decomposed components including traces of H2O and O2. The new reactions also cause the decomposed components to differ due to the different amounts of H2O and O2 even under the same strength of PD. Thus, the accuracy of assessing the insulation faults is definitely influenced when using the concentration and corresponding change of decomposed components. In the present research, a needle-plate electrode was employed to simulate the PD event of a metal protrusion insulation fault for two main characteristic components SO2F2 and SOF2, and to carry out influence analysis of trace H2O and O2 on the characteristic components. The research shows that trace H2O has the capability of catching an F atom, which inhibits low-sulfide SFx from recombining into high-sulfide SF6. Thus, the amount of SOF2 strongly correlates to the amount of trace H2O, whereas the amount of SO2F2 is weakly related to trace H2O. Furthermore, the dilution effect of trace O2 on SOF2 obviously exceeds that of SO2F2.

Ultra-wideband Components Utilizing a Uniplanar Ultra-wideband Balun (단일평면 초광대역 발룬을 이용한 초광대역 부품)

  • Kim, Young-Gon;Woo, Dong-Sik;Kim, In-Bok;Song, Sun-Young;Kim, Kang-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.30-36
    • /
    • 2009
  • Various types of ultra-wideband components with 10's of GHz bandwidth have been developed utilizing a uniplanar ultra-wideband balun, which is a simple microstrip-to-coplanar stripline (CPS) transition structure with the operating frequency range from near DC to over 40 GHz. Developed ultra-wideband components include antennas, mixers, doublers, and detectors in a carrier type and in a surface mountable type. One of surface mountable components, for example, single balanced doubler has output frequency 8 ~ 28 GHz. These high-Performance, low-cost ultra-wideband components may replace expensive conventional components, and also can be used to develop new multi-GHz OWE application areas.

Measurement of Thermal Characteristics of Electric Unit for Sancheon High-Speed Railcar (고속열차 산천 전장품 발열특성 측정)

  • Park, Won-Hee;Yun, Su-hwan;Park, Choonsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3672-3679
    • /
    • 2015
  • The heat generated by electrical components during train operation was estimated by measuring the wall temperature in a locomotive, as well as the temperature and speed of the air entering from the outside and then returning to the outside. The temperatures of the electrical components and wall surface in a high-speed train were measured using an infrared camera. The heat generated by the electrical components was exhausted to the outside through a duct installed on the ceiling of the high-speed train. Thus, the temperature and speed of this exhaust air were measured, as well as those of the air entering the locomotive from the outside. The temperatures at the surfaces of the electrical components and walls in the locomotive were also measured using an attachment-type temperature sensor. In addition, the measurement results were applied to analyze how the heat characteristics of the electrical components were affected by the train operation.