• Title/Summary/Keyword: electrical components

Search Result 2,856, Processing Time 0.026 seconds

Efficient Switch Mode Power Supply Design with Minimum Components for 5W Output Power

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • This paper presents a flyback technology in power conversion aimed at increasing efficiency and power density, reducing cost and using minimum components in AC-DC conversion. The proposed converter provides these features for square waveforms and constant frequency PWM. It is designed to operate in a wide input voltage range of 75-265VAC RMS with two output voltages of 5V and 20V respectively and full load output power of 5W. The proposed converter is suitable for high efficiency and high power density application such as LCDs, TV power modules, AC adapters, motor control, appliance control, telecom and networking products.

An Employed Zero Voltage/Zero Current Switching Commutation Cell for All Active Switches in a PWM DC/DC Converter

  • Lee, Dong-Yun;Hyun, Dong-Seok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.183-190
    • /
    • 2002
  • This paper presents an improved Zero Voltage/Zero Current Switching (ZVZCS) commutation cell with minimum additional components, which provides soft switching at both turn-on and turn-off of main and auxiliary switches as well as diodes in a PWM DC/DC converter. The proposed soft-switching technique is suitable for not only minority, but also majority carrier semiconductor devices. The auxiliary switch of the proposed ZVZCS commutation cell is in parallel with the main switch, and therefore, the main switch and the diode are free of currentstress. The operation principles of the proposed ZVZCS commutation cell are theoretically analyzed using the PWM boost converter topology as an example. The validity of the PWM boost converter topology with the proposed ZVZCS commutation cell is verified through theoretical analysis, simulation and experimental results.

Simplified d -q Equivalent Circuit of IPMSM Considering Inter-Turn Fault State (IPMSM의 선간단락고장에 따른 새로운 d -q 등가회로)

  • Kang, Bong-Gu;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1355-1361
    • /
    • 2016
  • The inter-turn fault (ITF) causes the negative sequence components in the d -q voltage equation due to an increase in the unbalance of three-phase input currents. For this reason, d -q voltage equation become complicate as the voltage equation is classified into positive and negative components. In this study, we propose a simplified d -q equivalent circuit of an interior permanent magnet synchronous motor under ITF state. First, we proposed modeling method for d -q current based on the finite element method simulation results. Then, we developed the simplified d -q equivalent circuit by applying the proposed d -q current modeling.

Electrical Properties of Supercapacitor Based on Dispersion Controlled Graphene Oxide According to the Change of Solution State by Washing Process (Washing을 통한 상분리 변화에 따른 그래핀 산화물의 분산도 조절 및 슈퍼커패시터의 특성에 관한 연구)

  • Sul, Ji-Hwan;You, In-kyu;Kang, Seok Hun;Kim, Bit-Na;Kim, In Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2018
  • Recently, there has been an increasing interest in the use of graphene as electrode materials for supercapacitors. In this regard, graphene oxide (GO) films were prepared using GO slurry obtained by dispersing GO powder in deionized (DI) water. The degree of dispersion of GO powder in DI water depends on the concentration of GO slurry, pH, impurity content, GO particle size, types of functional groups contained in GO, and manufacturing method of GO powder. In this study, the dispersivity of the GO powder was improved by adjusting the pH using only DI water (without additives), and a uniform GO film was obtained. The GO film was reduced by exposure to xenon intense pulsed light for a few milliseconds, and the reduced GO film was used as electrodes of a supercapacitor. The supercapacitor was characterized using cyclic voltammetry (CV), charge-discharge cycle, and electrochemical impedance spectroscopy measurements, and the specific capacitance of the supercapacitor was found to be ~140 F/g from the CV data.

Computational Investigation of Lightning Strike Effects on Aircraft Components

  • Ranjith, Ravichandran;Myong, Rho Shin;Lee, Sangwook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.44-53
    • /
    • 2014
  • A lightning strike to the aircraft seriously affects the aircraft and its components in various ways. As one of the most critical threats to the flight safety of an aircraft, fuel vapour ignition by lightning can occur through various means, notably through hot spot formation on the fuel tank skins. In this study, a coupled thermal-electrical approach using the commercial software ABAQUS is used to study the effects of a lightning strike on aircraft fuel tanks. This approach assumes that the electrical conductivity of a material depends on temperature, and that a temperature rise in a material due to Joule heat generation depends on electrical current. The inter-dependence of thermal and electrical properties-the thermal-electrical coupling-is analyzed by a coupled thermal-electrical analysis module. The analysis elucidates the effects of different material properties and thicknesses of tank skins and identifies the worst case of lightning zones.

Dielectric composition of the double pancake coil interior (Double pancake 코일 내부의 절연구성 연구)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Lee, Joung-Won;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.210-213
    • /
    • 2002
  • For insulation design of the superconducting transformer, many types of insulation tests should be carried out. To clarify the components of insulation for superconducting transformer, there are main four parts as 1ike that turn-to-turn interior of each primary and secondary windings, layer-to-layer between primary and secondary windings, and winding to grounded structures. The insulation components should meet the required withstand voltage of the system and enough safety factors must included. As the fundamental insulation characteristics, we tested surface flashover voltage of spacer that would place between the coils and would take the role of both cooling duct and insulator. The structure of spacer in practice vary depending on coil type, in this work we considered double pancake coil for the superconducting transformer. In this study we tested flashover voltages of several arrangement of spacer.

  • PDF

Microfluidic Components and Bio-reactors for Miniaturized Bio-chip Applications

  • Euisik Yoon;Yun, Kwang-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.86-92
    • /
    • 2004
  • In this paper miniaturized disposable micro/nanofluidic components applicable to bio chip, chemical analyzer and biomedical monitoring system, such as blood analysis, micro dosing system and cell experiment, etc are reported. This system includes various microfluidic components including a micropump, micromixer, DNA purification chip and single-cell assay chip. For low voltage and low power operation, a surface tension-driven micropump is presented, as well as a micromixer, which was implemented using MEMS technology, for efficient liquid mixing is also introduced. As bio-reactors, DNA purification and single-cell assay devices, for the extraction of pure DNA from liquid mixture or blood and for cellular engineering or high-throughput screening, respectively, are presented.