• Title/Summary/Keyword: electric wheelchair

Search Result 69, Processing Time 0.032 seconds

The torque distribution algorithm of driving wheels using 2D joystick in the electric wheel-chair (2D 조이스틱에 기반한 전동휠체어의 토크 분배 알고리즘)

  • Park, Sung-Jun;Park, Je-Wook;Kim, Jang-mok
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.212-213
    • /
    • 2013
  • This paper proposes the algorithm of torque distribution in the electric wheel-chair using 2D joystick for drive safety. For the accurate driving performance, the specific and precise torque distribution is required in both wheels depending on signals of X-Y axis that is generated from 2D joystick. The signals of X-Y axis from joystick are transformed into the propulsion force and the torque reference. And the torque reference can be generated through the dynamic model of wheel-chair. The optimal dynamic characteristics of the electric powered wheelchair can be obtained, by adjusting the sensitivity coefficients of propulsion force and torque reference, In addition, the system takes smooth and stable control characteristics due to continuous torque output at all directions of joystick. The several simulations verify the usefulness of the proposed algorithm about torque distribution.

  • PDF

Joint Angles Analysis of Intelligent upper limb and lower extremities Wheelchair Robot System (지능형 상 · 하지 재활 휠체어 로봇 시스템의 관절각도 분석)

  • Song, Byoung-Ho;Kim, Kwang Jin;Lee, Chang Sun;Lim, Chang Gyoon
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.33-39
    • /
    • 2013
  • When the eldery with limited mobility and disabled use a wheelchairs to move, it can cause decreased exercise ability like decline muscular strength in upper limb and lower extremities. The disabled people suffers with spinal cord injuries or post stroke hemiplegia are easily exposed to secondary problems due to limited mobility. In this paper, We designed intelligent wheelchair robot system for upper limb and lower extremities exercise/rehabilitation considering the characteristics of these severely disabled person. The system consists of an electric wheelchair, biometrics module for Identification characteristics of users, upper limb and lower extremities rehabilitation. In this paper, describes the design and configurations and of developed robot. Also, In order to verify the system function, conduct performance evaluation targeting non-disabled about risk context analysis with biomedical signal change and upper limb and lower extremities rehabilitation over wheelchair robot move. Consequently, it indicate sufficient tracking performance for rehabilitation as at about 86.7% average accuracy for risk context analysis and upper limb angle of 2.5 and lower extremities angle of 2.3 degrees maximum error range of joint angle.

Development of Surface Roughness Index using Gyroscope (자이로스코프를 이용한 노면 평탄도 분류지수 개발)

  • Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.127-132
    • /
    • 2020
  • In this study, the process of providing information necessary to remove physical barriers such as road slopes that obstruct the activities of the disabled is in progress. Through experiments, we implement a quantified road surface roughness index that enables the implementation of IoT-based systems necessary for the elderly and the disabled to safely move to their destination. As a preliminary study, a road surface measurement device using a gyroscope was devised. To check the roughness and flatness of the road surface, X, Y displacement, and acceleration displacement were measured using a gyroscope. By calculating the measured data, the roughness and flatness of the road surface were quantified from 0 to 100. We implemented an algorithm that divides this index into 4 stages, displays it on a map, and provides it to users. Finally, a system for the disabled and elderly electric wheelchair users to secure basic mobility was established.

Smart Electric Wheelchair using Eye-Tracking (아이트래킹을 이용한 스마트 전동휠체어)

  • Kim, Tae-Sun;Yoon, Seung-Mok;Kim, Tae-Seong;Park, Hyeon-Kyeong;Park, Seong-Hwan;Kim, Woo-Jong;Jeong, Sang-Su;Jang, Young-Sang;Jung, Hyo-Jin;Park, Su-Bin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.259-260
    • /
    • 2020
  • 기존의 전동휠체어를 사용하는 약자 또는 중증 장애인 등 지체(肢體)가 불편한 사람들이 휠체어 사용 시 생기는 문제점을 해소할 목적으로 시작되었다. 이는 전동휠체어가 보행 기구임에도 자동차에 준하는 교통사고에 대해 무방비하게 노출되고, 중증 장애인에 대한 이동권 보장이 아직 미흡하여 생기는 문제이다. 따라서 본 연구에서는 이러한 문제로 인한 불편함을 해소하고자 아이트래킹을 이용한 스마트 전동휠체어 기술을 적용하고자 한다. 루게릭병 등으로 인해 지체(肢體)의 움직임에 제한이 있는 사람들에게 보호자가 밀어주는 휠체어에 의존하는 것이 아닌 Eye-Tracker를 이용한 시선 추적(Eye-Tracking) 기술로 휠체어 동작이 가능하다. Web-Cam과 라즈베리 파이를 통해 얻은 전·후·좌·우의 영상정보를 디스플레이 화면에 송출한다. 그 후 Eye-Tracking 기술을 이용해 디스플레이 화면에 표시된 전·후·좌·우 이동에 관한 UI(User Interface)룰 사용자가 송출된 영상을 보면서 눈의 움직임만으로 선택해 휠체어의 방향을 제어한다. 또한 전동휠체어의 조작 실수로 다른 행인 또는 장애물과 충돌하는 문제점을 초음파 센서를 이용하여 일정 거리 내에 사물이나 사람이 있을 경우 디스플레이 화면에 경고표시 및 경고음, 각 초음파 센서 위치에 맞는 LED작동으로 사용자들에게 추돌 위험경고와 함께 장애물의 위치파악이 가능하도록 한다. 따라서 스마트 전동휠체어를 통하여 수동적인 움직임이 아닌 능동적이고, 초음파 센서로 인해 안전한 이동이 가능하게 한다.

  • PDF

Development of a hybrid wheelchairs by using AFPM motor (AFPM 전동기를 이용한 수/전동 휠체어 개발)

  • Kim Hyoung-Gil;Kong Jeong-Sik;Seo Young-Taek;Oh Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.908-910
    • /
    • 2004
  • Disabled people have benefited greatly from the developments in technology over the last twenty years. Systems have been developed and refined to help them overcome, or cope with, difficulties they experience as a result of their disabilities. As technology has become cheaper, more powerful and easier to use, disabled people have taken to using them to an ever increasing degree. In this paper, we propose novel hybrid mobility devices which use a combination of human power and electric power. This paper deals with the design of a direct-drive wheel Axial-flux permanent magnet motor. This type motor prove to be the best candidate for application in electric vehicles, as in comparison with conventional motors they allow design with higher compactness, lightness. A prototype vehicle for an application as a hybrid wheelchair is designed, built, and tested.

  • PDF

Analysis of driving characteristics of electric wheelchair for indoor driving using lithium-ion battery (리튬이온 배터리를 적용한 실내용 전동휠체어 주행특성 분석)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.857-866
    • /
    • 2020
  • 'Movement' is an expanded concept of 'place' where people act, interact with one another and achieve a specific purpose at every moment. Wheelchairs, as a mobility aid, have a profound impact on improving the quality of physical and psychological well-being for the mobility disadvantaged groups who have mobility difficulties. Such mobility aids were developed mainly for outdoor activities, but in recent years, mobility aids for indoor spaces, the main living environment, are also being developed. Because indoor mobility aids generally move short distances repeatedly, this study examined the characteristics of lithium-ion batteries in short-distance driving of battery-powered wheelchairs and compared them with the characteristics of lithium-ion batteries in continuous driving. The result showed that the driving time for short-distance driving was 2.8% shorter than that of continuous driving. The current supplied to the motor was 15.4% higher for short-distance driving than that of continuous driving.

Design of Indoor Electric Moving and Lifting Wheelchair with Minimum Rotation Radius and Obstacle Overcoming (최소 회전반경 및 장애물 극복형 실내 전동 이·승강 휠체어의 설계)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.415-424
    • /
    • 2019
  • In this paper, a minimum rotation radius was designed and fabricated to overcome the threshold so that elderly or disabled people who have difficulty moving can move and transfer safely and conveniently in a narrow room. In the indoor environment, where the sedentary culture develops, this study aimed to provide convenience for passengers with fracture diseases, geriatric diseases, and other knee and waist diseases. First, links, seats, armrests, covers, motors, batteries, chargers, controllers, etc. were attached to the frame so that they could be moved and lifted indoors. The product design and structure were designed considering the user's environment and physical characteristics, and IoT functions were added. A driving experiment was performed to confirm the operating performance of the manufactured indoor moving and lifting wheelchair. The performance tests, such as continuous running time, turning radius, maximum actuator load, maximum lift height, sound pressure level, minimum sensing distance of the driving aid sensor, interworking of server and app programs, device compatibility, and duty cycle error rate, were performed. As a result of the test, the built-in wheelchair could achieve the performance test target of each item and operate successfully.

Usability Study of the Elderly Women Using Indoor Driving and Elevating Electric Wheelchairs (실내 주행 및 승강 전동 휠체어를 이용하는 고령 여성의 사용성 연구)

  • Kim, Young-Pil;Hong, Jae-Soo;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.419-427
    • /
    • 2020
  • This study was undertaken to address the difficulties and inconveniences of an electric wheelchair. We focused on improving usability of initially completed products by augmenting the prototypes designed in the previous study. For evaluation of usability, 10 elderly women aged over 65 years, capable of movements and physical activities in daily life, were enrolled as subjects. The experimental method included a subjective satisfaction questionnaire evaluation of the elderly women using the target product, and the observation evaluation was achieved using video recording data, etc. Usability evaluation revealed that the elevating sector requires improvement of intuition through separation of the elevating control panel and the driving control panel. Improvements in the driving sector include corrections of the front wheel mechanism or driving control algorithm, UI, and sudden stop system. Transferring section assessment revealed a necessity to secure structures and add structures that support power. We believe that based on the inconveniences and improvements presented in the usability evaluation, appending the existing prototype with complementary products will improve the quality of life of elderly women with limited mobility.

Voice Recognition Module for Multi-functional Electric Wheelchair (다기능 전동휠체어의 음성인식 모듈에 관한 연구)

  • 류홍석;김정훈;강성인;강재명;이상배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.83-86
    • /
    • 2002
  • This paper intends to provide convenience to the disabled, losing the use of their limbs, through voice recognition technology. The voice recognition part of this system recognizes voice by DTW (Dynamic Time Warping) Which is most Widely used in Speaker dependent system. Specially, S/N rate was improved through Wiener filter in the pre-treatment phase while considering real environmental conditions; the result values of 12th order feature pattern per frame are extracted by DTW algorithm using LPC and Cepsturm in feature extraction process. Furthermore, miniaturization is pursued using TMS320C32, 71's the floating-point DSP, for the hardware part. Currently, 90% of hardware porting has been completed, but we can confirm that the recognition rate was 96% as a result of performing the DTW algorithm in PC.

  • PDF

A Study on Improvements of the Educational Facilities & Equipment Services Supporting for Disabled Students in University (장애대학생 교육복지지원 시설·설비부문의 개선방안에 대한 연구)

  • Min, Kyung-Suk
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.27 no.5
    • /
    • pp.24-31
    • /
    • 2020
  • This study proposed an effective improvement direction for the education and welfare supporting facilities and equipment sectors to guarantee the right of disabled students to study in university. To derive high-demand items, the value engineering quality model technique was conducted on the students who majoring in architecture and the disabled students. The high-demand items for the education and welfare supporting facilities and equipment was detailed by interviews with the disabled students. Especially, anti-skid floor material, spacious access space for electric wheelchair, efficient operation system for elevator and cafeteria waiting time are strongly demanded for the disabled students. Based on this research, universities can make efficient investments and improvements in the education and welfare supporting facilities and equipment sectors for disabled students.