• Title/Summary/Keyword: electric wave

Search Result 796, Processing Time 0.03 seconds

Magnetic Resonance and Electromagnetic Wave Absorption of Metamaterial Absorbers Composed of Split Cut Wires in THz Frequency Band (THz 대역에서 Cut Wire로 구성된 메타소재의 자기공진 및 전파흡수특성)

  • Ryu, Yo-Han;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.49-53
    • /
    • 2017
  • Metamaterials composed of split cut wire (SCW) on grounded polyimide film substrate have been investigated for the aim of electromagnetic wave absorbers operated in THz frequency band. Reflection loss and current density distributions are numerically simulated with variations of the SCW geometries using the commercial software. The minimum reflection loss lower than -20 dB has been identified at 5.5~6.5 THz. The simulated resonance frequency and reflection loss can be explained on the basis of the circuit theory of an inductance-capacitance (L-C) resonator. Dual-band absorption can be obtained by arrangement of two SCWs of different length on the top layer of the grounded substrate, which is due to multiple magnetic resonances by scaling of SCWs. With increasing the side spacing between SCWs, a more enhanced absorption peak is observed at the first resonance frequency that is shifted to a lower frequency.

An Approximate Closed Form Representation of the Microstrip Dyadic Surface Green's Function (Mictrostrip Dyadic 표면 Green 함수의 근사표현식)

  • 최익권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.549-560
    • /
    • 1993
  • A simple closed form approximation is developed by a new approach presented in this paper for the microstrip surface dyadic Green's function which arises in the problem of an electric current point source on an infinite planar grounded dielectric substrate. This closed form approximation includes the effects of the space wave, the surface wave and their coupling within the transition region near the source, and remains accurate as near as $0.1{\pi}_1$ from the source point for a substrate thickness as large as $0.04{\pi}_1$, where, ${\pi}_1$, is the free space wavelength, This result can significantly facilitate the rigorous moment method analysis of microstrip antenna arrays on relatively this substrates of practical interest. Numerical results illustrating the accuracy of the closed form approximation are presented and CPU times associated with some mutual impedance calculations are also included.

  • PDF

Numerical Simulation of Beach Profile Changes (해빈 종단면 변형의 수치모의)

  • Cheon, Se-Hyeon;Ahn, Kyung-Mo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • Several numerical models for predicting beach profile changes have been developed by many researchers. Many of the earlier models are known to simulate the erosional profiles with the formation of offshore bar. However, most of the models don't have proper mechanism to incorporate the recovery process of the eroded profiles after a storm and can not simulate the beach accretion with acceptable accuracy. In order to overcome these shortcomings, we propose a new numerical model which has new features to simulate the accretional phase of beach recovery process after storm including such as redistribution of suspended sand particles near the breaking point. The simulation results of the proposed model were compared with LWT (Large Wave Tank) experiments performed at CRIEPI (Central Research Institute of Electric Power Industry in Japan) and CE (the Us Army Corps of Engineers) and it was shown to have performed better compared to SBEACH (Storm-induced BEAch CHange).

Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer (Phased Array트랜스듀서에 있어서 구성 압전소자수의 변화에 따른 초음파 빔 전파 특성의 수치 해석)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 1999
  • A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased.

  • PDF

Geophysical Explorations for Safety Analysis of Bangeosan-Maaebul(Stone Relief Bhaisajyaguru triad at Mt. Bangeosan) (방어산 마애여래입상의 안전진단을 위한 지구물리탐사)

  • O, Seon-Hwan;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • Seismic refraction and electrical resistivity surveys were conducted in Bangeosan Maaebul site located in Haman, Kyungnam, in order to present geophysical safety analysis method for masonry cultural properties. Seismic refraction exploration revealed that the ground was composed of three layers in term of seismic wave velocity; the upper, medium, and lower layers. The low velocity ranging from 308 to 366 m/sec in upper layer suggests weathered soil, the intermediate velocity from 1906 to 2090 m/sec in the medium layer indicates weathered rocks, and the high velocity from 5061 to 5650 m/sec in the lower layer implies extremely hard rocks. Our seismic result suggests that the upper and medium layer around the Maaebul should be reinforced to support the construct. The result of electric resistivity survey shows that there exists a low resistivity zone, ranging from 131 to 226 Ohm-m, at the right side of the Maaebul with the direction of NE-NNE. This area is the weakness zone as it plays role of the underground water passage in rainy season.

  • PDF

Estimation of the Depth of Embedded Sheet Piles Using Two Types of Geophysical Loggings (다종 물리검층을 통한 시트파일 근입 심도 추정 연구)

  • Hwang, Sungpil;Kim, Wooseok;Jeoung, Jaehyeung;Kim, Kiju;Park, Byungsuk;Lee, Chulhee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • This investigation used two different geophysical logging techniques to confirm the depth to which a sheet pile was driven. Depth was estimated through analysis of the movement speed and three-component movement directions of a P-wave transmitted through the ground. It was also estimated by pole-pole and pole-dipole methods using electrical data logging to measure apparent resistivity. The two methods' respective results were 9.0 m (±1.5 m) and 7.5 m. As field ground conditions will include mixtures of various materials, electrical data logging is judged to be suitable for assessing depth due to its low signal-to-noise ratio.

Comparison of vibration characteristics of file systems for root canal shaping according to file length

  • Seong-Jun Park;Se-Hee Park ;Kyung-Mo Cho ;Hyo-Jin Ji ;Eun-Hye Lee ;Jin-Woo Kim
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.51.1-51.10
    • /
    • 2020
  • Objectives: No studies have yet assessed vibration characteristics according to endodontic file length. Accordingly, the objective of the present study was to examine the vibration characteristics according to nickel-titanium file length and to compare these characteristics between different file systems. Materials and Methods: A total of 45 root canal models were divided into 3 experimental groups (n = 15 each) based on the file system used (ProTaper Gold [PTG], ProTaper Next, or WaveOne Gold [WOG]). Each experimental group was further divided into 3 subgroups according to file length (21, 25, or 31 mm). An electric motor (X-SMART PLUS) was used in the experiment. For each file system, vibrations generated when using a size 25 file were measured and used to calculate the average vibration acceleration. The differences in vibrations were analyzed using 1-way analysis of variance and the Scheffé post hoc test with a confidence interval of 95%. Results: In the PTG file system, significantly lower vibration acceleration was observed when using a 21-mm file than when using a 31-mm file. In the WOG file system, significantly stronger vibration acceleration was observed when using a 31-mm file than when using 21- or 25-mm files. Regardless of the file length, the WOG group exhibited significantly stronger vibration acceleration than the other 2 experimental groups. Conclusions: In clinical practice, choosing a file with the shortest length possible could help reduce vibrations. Additionally, consideration should be given to vibrations that could be generated when using WOG files with reciprocating motion.

Distance Estimation Based on RSSI and RBF Neural Network for Location-Based Service (위치 서비스를 위한 RBF 신경회로망과 RSSI 기반의 거리추정)

  • Byeong-Ro Lee;Ju-Won Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.265-271
    • /
    • 2023
  • Recently, location information services are gradually expanding due to the development of information and communication technology. RSSI is widely used to extract indoor and outdoor locations. The indoor and outdoor location estimation methods using RSSI are less accurate due to the influence of radio wave paths, interference, and surrounding wireless devices. In order to improve this problem, a distance estimation method that takes into account the wireless propagation environment is necessary. Therefore, in this study, we propose a distance estimation algorithm that takes into account the radio wave environment. The proposed method estimates the distance by learning RSSI input and output considering the RBF neural network and the propagation environment. To evaluate the performance of the proposed method, the performance of estimating the location of the receiver within a range of up to 55[m] using a BLE beacon transmitter and receiver was compared with the average filter and Kalman filter. As a result, the distance estimation accuracy of the proposed method was 6.7 times higher than that of the average filter and Kalman filter. As shown in the results of this performance evaluation, if the method of this study is applied to location services, more accurate location estimation will be possible.

A VIEW PLASMA MOTION OF HALL EFFECT THRUSTER WITH PARTICLE SIMULATION (입자모사를 통한 HALL EFFECT THRUSTER의 플라즈마 운동 이해)

  • Lee, J.J.;Jeong, S.I.;Choe, W.;Lee, J.S.;Lim, Y.B.;Seo, M.H.;Kim, H.M.
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.139-143
    • /
    • 2007
  • Electric propulsion has become a cost effective and sound engineering solution for many space applications. The success of SMART-1 and MUSES-C developed by European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) each proved that even small spacecraft could accomplish planetary mission with electric propulsion systems. A small electric propulsion system which is Hall effect thruster like SMART-1 is under development by SaTReC and GDPL (Glow Discharge Plasma Lab.) in KAIST for the next microsatellite, STSAT-3. To achieve optimized propulsion system, it is very necessary to understand plasma motions of Hall effect thruster. In this paper, we try to approach comprehensive plasma model with the particle simulation complementary to Particle In Cell (PIC) simulation. We think these two different approaches will help experimenters to optimize Hall effect thruster performances.

  • PDF

Comparative Study on the Characteristics of Ground Vibrations Produced from Borehole Blast Tests Using Electronic and Electric Detonators (전자뇌관과 전기뇌관을 사용한 시추공 발파시험에서의 지반진동 특성에 관한 비교 연구)

  • Choi, Hyung-Bin;Won, Yeon-Ho
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.37-49
    • /
    • 2010
  • Ground vibration caused by blasting in the urban area close to structures can give some indirect damage to human body and may lead to structural damage to buildings. At the stage of design or when complaints were filed by residents, the test blasting in borehole, which is most practical for expressing simple vibration wave form quantitatively, is usually chosen for assessing the degree of damage to structures. In this paper, some lessons gained from the application of electronic detonator triggering system in borehole test blasting are presented. The difference in delay time of detonator when borehole is blasted by electronic detonator and electric detonator are discussed. The peak particle velocities measured at the structure embedded in the similar rock layer to main line of tunnel at test site and measured at the road surface just above the tunnel having different overburden layers were analysed to draw their relationship. By comparing the results with those appearing in some published literatures, the usefulness of the borehole test blasting and the importance of delay time of detonator are addressed.