• Title/Summary/Keyword: electric vehicles

Search Result 1,381, Processing Time 0.023 seconds

Development of Power Measurement Method for Electrified Vehicles (전동화된 자동차의 출력측정방법 개발)

  • Choi, Dongseok;Ryu, Kihyeon;Lee, Jaewan;Park, Yongsung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.135-143
    • /
    • 2014
  • Electrified vehicles can be classified with hybrid electric vehicles, battery electric vehicles and fuel cell electric vehicles. These vehicles have two more than energy converters which are the part of a powertrain. It is particularly difficult to estimate the power of hybrid electric vehicles due to two different energy converters with different power characteristics. Therefore, a new power concept for these vehicles is needed. The vehicle power as the new concept for solving this problem was defined in this study. The test method and the procedure were made a development in this study. Four electrified vehicles with different electric fraction were used to validate the method. Two percentage of COV was suggested as a criterion for the maximum vehicles power based on the previous studies. The repeatability of this method was within ${\pm}2$ per cent for the maximum vehicle power and within ${\pm}5$ per cent for the vehicle speed at maximum vehicle power.

Characteristic Analysis of Non-Contact Reducer for Electric Vehicles using Arago Disc Effect (아라고 원판 효과를 이용한 전기자동차용 비접촉 감속기의 특성 분석)

  • Goon-Ho Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1223-1231
    • /
    • 2023
  • In the case of internal combustion engine vehicles, transmissions are essential for various reasons, such as vehicle starting and speed control. However, in the case of electric vehicles, unlike internal combustion engine vehicles, a transmission is not necessarily required. Of course, considering the efficiency of electric vehicles, a transmission is necessary, but installing the existing transmission as is has the opposite effect due to increased vehicle weight, so it has not been considered so far. In this paper, a non-contact reducer type using the Arago disc effect is proposed rather than a transmission using a conventional gear train, and the aim is to examine whether this can increase the driving efficiency of electric vehicles while minimizing weight. In addition, the effectiveness of the proposed reducer will be verified by manufacturing and testing it.

Proposal and Simulation of Optimal Electric Vehicle Routing Algorithm (최적의 전기자동차 라우팅 알고리즘 제안 및 시뮬레이션)

  • Choi, Moonsuk;Choi, Inji;Jang, Minhae;Yoo, Haneul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2020
  • Scheduling of electric vehicles and optimizing for charging waiting time have been critical. Meanwhile, it is challengeable to exploit the fluctuating data from electric vehicles in real-time. We introduce an optimal routing algorithm and a simulator with electric vehicles obeying the Poisson distribution of the observed information about time, space and energy-demand. Electric vehicle routing is updated in every cycle even it is already set. Also, we suggest an electric vehicle routing algorithm for minimizing total trip time, considering a threshold of the waiting time. Total trip time and charging waiting time are decreased 34.3% and 86.4% respectively, compared to the previous algorithm. It can be applied to the information service of charging stations and utilized as a reservation service.

Analysis of Fire Accident on Power Line for DC Electric Traction Vehicles (전기철도 전원계통에서의 화재사고 사례 분석)

  • Song, Jae-Yong;Cho, Young-Jin;Nam, Jung-Woo;Kim, Jin-Pyo;Park, Nam-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper describes a cause of fire accidents on power system fire DC electric traction vehicles. We investigated fire scene of power line for DC electric traction vehicles. From analysis results, the cause of fire on power line turned out line to ground fault between a feeder of electric power services(pantagraph) and DC electric traction vehicle roof. Fire accident of DC electric traction vehicles be assumed that electric sparks had been produced between the pantagraph and the power line conductor by repetitively making contact and separation, maybe if some material like branches get in between connecting rod it makes progress line to ground fault. ZnO arresters are widely used to protect DC electric traction vehicles against overvoltages caused by lightning or switching surges. However, the arresters are deteriorated by commercial overvoltages and/or lightning one. The deteriorated arresters could lead power failures, such as line to ground fault by a thermal runaway resulting from the increases in leakage current even in a nominal power system voltage. Finally, the power failures would be causative of the fire accident.

Proposal and Manufacturing of Prototype of the CVT Model using Spring

  • Kwon, Young Woong;Park, Sung Cheon
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • In order for small electric vehicles to drive on hilly roads in Korea, methods to improve the climbing ability and power performance of vehicles should be taken. In order to improve the power performance of small electric vehicles, the performance of motors mounted on electric vehicles should be improved. However, if the performance of the motor is improved to improve the power performance of the electric vehicle, it is possible to lower the price competitiveness accordingly. In addition, the power consumption of the battery is rapidly increased to drive the high-performance motor, so in order to introduce the small electric vehicle into the domestic market, various problems must be overcome. In order to commercialize small electric vehicles that do not emit harmful exhaust gases to the human body in the hilly domestic terrain, it is effective to introduce a separate continuously variable transmission system that can improve the climbing ability and power transmission ability. In this study, we propose a proprietary model of continuously variable transmissions that can be applied to small electric vehicles. The proposed continuously variable transmission is equipped with a spring in the driving pulley and the driven pulley, and has the advantage of performing a shift that increases torque in a situation where the vehicle needs to increase torque when driving on a hill. In addition, the basic design for commercialization of the proposed continuously variable transmission was carried out, and the prototype manufactured and attached to the body of a small electric vehicle.

The Influence of Electric Noise for Decrepit Vehicle (전기 노이즈가 노후 차량에 미치는 영향)

  • Choi, Nyeonsik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.382-389
    • /
    • 2017
  • The development of electronic technology has been rapidly achieved in the automotive industry. A trend that attaches electric equipment, including ECUs at vehicles, is observed. However, decrepit vehicles have several electrical noises and errors. The effect of electric noise on vehicles that are focused on smoke was investigated. Many researchers have argued that one of the reasons of the occurrence of smoke in vehicles is the inexact time of the occurrence of ignition. Moreover, various physical, chemical, and thermodynamic solutions were attempted to approach and many improvements were accomplished. However, in this study, the reduction of electrical and electronic noise is confirmed to improve the accuracy of the injection time on decrepit vehicles with electrical and electric technologies. Previous studies suggest that the distance between the pilot and main ignitions affect the occurrence of smoke and control the variance value of the distance between pilot and main ignitions with electric filter. Thus, the effect of reducing smoke occurred.

A Study on Power System Analysis Considering Special-days Load Mobility of Electric Vehicle (특수일 이동을 고려한 전기자동차 충전부하의 전력계통 영향에 관한 연구)

  • Hwang, Sung-Wook;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.253-256
    • /
    • 2016
  • In this paper, the power system with electric vehicles is analyzed considering the mobility and diffusion rate of electric vehicles in the smart grid environment. In the previous studies, load modeling and load composition rates have been researched and the results are applied to develop a new load model to explain the mobility of electric vehicles which could affect on the power system status such as power flow and stability. The results would be utilized to research and develop power system analysis methods considering movable charging characteristics of electric vehicles including movable discharging characteristics which could be affected by the diffusion progress of electric vehicles.

Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles (전기자동차 에너지효율 평가를 위한 수치해석 연구)

  • Mingi Choi
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

Technology Development Trend of Domestic and Foreign Electric Vehicle and Technology Development Strategy of Domestic Electric Vehicle Core Parts (국내외 전기자동차 기술 개발 동향 및 국내 전기자동차 핵심 부품 기술 개발 전략)

  • Son, Younh-Wook;Huh, Gun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • The electric vehicle market has increased rapidly in recent years. Established global automakers have announced that electric cars will be developed and distributed. Furthermore, current electric cars are not merely breezes, instead, they are the mainstream of automobiles. However, high prices, short mileage, and long charge times are the main obstacles to the spread of electric vehicles. To solve these problems, the competition for technology development for the expansion of electric vehicles worldwide intensifies because of the improvements in mileage, price reduction, and expansion of charging infrastructure. In this paper, the trends in the development of key technologies for electric vehicles in overseas markets and the present strategic goals for the development of key technologies for electric vehicles in Korea will be identified.

A Study on EV Charging Scheme Using Load Control

  • Go, Hyo-Sang;Cho, In-Ho;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1789-1797
    • /
    • 2017
  • It is necessary to charge electric vehicles in order to drive them. Thus, it is essential to have electric vehicle charging facilities in place. In the case of a household battery charger, the power similar to that consumed by a household with a basic contract power of 3kW is consumed. In addition, many consumers who own an electric vehicle will charge their vehicles at the same time. The simultaneous charging of electric vehicles will cause the load to increase, which then will lead to the imbalance of supply and demand in the distribution system. Thus, a smart charging scheme for electric vehicles is an essential element. In this paper, simulated conditions were set up using real data relating to Korea in order to design a smart charging technique suitable for the actual situation. The simulated conditions were used to present a smart charging technique for electric vehicles that disperses electric vehicles being charged simultaneously. The EVs and Smart Charging Technique are modeled using the Electro Magnetic Transients Program (EMTP).