• 제목/요약/키워드: electric vehicle charging station

검색결과 43건 처리시간 0.027초

전기차 충전시스템을 위한 도시철도 DC 전력의 활용방안 연구 (A study on the application of urban railway DC electric power for electric car charging system)

  • 강현일;김윤식;심재석;임형길;유기선;이기승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1855-1860
    • /
    • 2010
  • Electric vehicles have reached a new level of development with introductions by Chrysler, Ford, Honda and Toyota. Today's charging technology includes conductive and inductive charging systems. There are three standardized charging levels: Level 1: charging can be done from a standard, grounded AC 120V, 3-prong outlet available in all homes; Level 2: charging is at AC 240V, 40 amp charging station with special consumer features to make it easy and convenient to plug in and charge EVs at home or at an EV charging station; Level 3: a high-powered charging "fast charge" technology currently under development that will provide a charge in less than 15 minutes. The incoming AC power is converted to DC and stored in the vehicle's batteries. In this paper, we investigated the application of urban railway DC electric power for electric car charging system.

  • PDF

전기자동차 충전소 수요 예측 데이터 전처리 기법 및 서비스 운영 아키텍처 (Data Preprocessing Technique and Service Operation Architecture for Demand Forecasting of Electric Vehicle Charging Station)

  • 홍준기;김순태;김정아
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.131-138
    • /
    • 2023
  • 세계적으로 기후 위기로 인해 친환경 산업이 발전하고 있다. 전기자동차는 내연기관 자동차에 비해 탄소 배출량을 30~70% 이상 절감할 수 있을 것으로 전망되어 주목받고 있는 친환경 산업이다. 전기자동차가 대중화됨에 따라 충전소는 전기자동차 구매를 위한 중요한 요소로 자리 잡았다. 최근 연구에서는 지역의 충전소 수요를 파악하고 경제적인 효과를 최대화할 수 있는 위치를 선정하기 위해 인공지능을 활용하고 있다. 본 연구에서는 전기자동차 충전소 수요 예측 모델의 성능향상에 이바지하고자 인공지능 모델에 활용할 수 있는 전국 단위의 데이터를 정의하고 전처리 기법을 제안하였다. 또한 실제 충전소 수요 예측을 위한 전처리기와 인공지능 모델, 서비스 웹을 구현하고 데이터의 입지선정 요인으로의 가치를 검증하였다.

태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구 (A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation)

  • 최회균
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

Space Proposed in Accordance with the Usage Patterns and Analysis of the Charging Station Environment of Electric Vehicles

  • Hwang, Soon-Min;Kim, Dong-Chan
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.27-33
    • /
    • 2014
  • This study analyzed the electric vehicle recharging station status with recharging time limitation due to long waiting time, and figured out the user status by user interviews. And then this study verified the validity of hypothesis in terms of environmental design perspective and suggested layout of recharging station model. 21 recharging stations in Korea and station operation cases of 7 countries were examined. Except for the USA, the reality of electric vehicle recharging station today is the 1st proving stage focusing on the infrastructure construction of electric vehicle recharging station. It focuses on performance of recharging facility, use efficiency and operation environment of electric vehicle. About the effective waiting time of the user to use it should be studied. The current conditions of recharging station are as follows: Lack of independent recharging space, lack of facility that reduces external effect of recharging space, and lack of lounge for users during the waiting time. These three are essential factors constructing a suggesting model after basic layout, which needs proper measurement on the long recharging time and long waiting time. The essential factors are applied to electric vehicle recharging station layout so that users might use 'digital refresh" i.e. lounge and information contents service during the waiting time which provides convenience of recharging and emotional space with users. Such upgrade recharging station environmental model might resolve the burden of long recharging time which may contribute to the popularization of electric vehicles.

테슬라(TESLA) 전기자동차 핵심 기술동향 (The Core Technical Trends of TESLA EV(Electric Vehicle) Motors)

  • 배진용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.64-65
    • /
    • 2017
  • This paper review the core technical trends of TESAL EV(Electric Vehicle) Motors. The object of this study analyzes electric vehicle's body appearance, motor cooling system, battery arrangement, battery management system (BMS), and super charging station etc.

  • PDF

EV 충전소의 일별 최대전력부하 예측을 위한 LSTM 신경망 모델 (An LSTM Neural Network Model for Forecasting Daily Peak Electric Load of EV Charging Stations)

  • 이해성;이병성;안현
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.119-127
    • /
    • 2020
  • 국내 전기차 (EV: Electric Vehicle) 시장이 성장함에 따라, 빠르게 증가하는 EV 충전 수요에 대응하기 위한 충전설비의 확충이 요구되고 있다. 이와 관련하여, 종합적인 설비 계획을 수립하기 위해서는 미래 시점의 충전 수요량을 예측하고 이를 바탕으로 전력설비 부하에 미치는 영향을 체계적으로 분석하는 것이 필요하다. 본 논문에서는 한국전력공사의 EV 충전 데이터를 이용하여 충전소 단위의 일별최대부하를 예측하는 LSTM(Long Short-Term Memory) 신경망 모델을 설계 및 개발한다. 이를 위해, 먼저 데이터 전처리 및 이상치 제거를 통해 정제된 데이터를 얻는다. 다음으로, 충전소 단위의 일별 특징들을 추출하여 훈련 데이터 집합을 구성하여 일별 최대 전력부하 예측 모델을 학습시킨다. 마지막으로 충전소 유형 별 테스트 집합을 이용한 성능 분석을 통해 예측 모델을 검증하고 이의 한계점을 논의한다.

A Priority Index Method for Efficient Charging of PEVs in a Charging Station with Constrained Power Consumption

  • Kim, Seung Wan;Jin, Young Gyu;Song, Yong Hyun;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.820-828
    • /
    • 2016
  • The sizable electrical load of plug-in electric vehicles may cause a severe low-voltage problem in a distribution network. The voltage drop in a distribution network can be mitigated by limiting the power consumption of a charging station. Then, the charging station operator needs a method for appropriately distributing the restricted power to all plug-in electric vehicles. The existing approaches have practical limitation in terms of the availability of future information and the execution time. Therefore, this study suggests a heuristic method based on priority indexes for fairly distributing the constrained power to all plug-in electric vehicles. In the proposed method, PEVs are ranked using the priority index, which is determined in real time, such that a near-optimal solution can be obtained within a short computation time. Simulations demonstrate that the proposed method is effective in implementation, although its performance is slightly worse than that of the optimal case.

Analysis on the Operation of a Charging Station with Battery Energy Storage System

  • Zhu, Lei;Pu, Yongjian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1916-1924
    • /
    • 2017
  • Fossil oil, as the main energy of transportation, is destined to be exhausted. The electrification of transportation is a sustainable solution to the energy crisis, since electric power could be acquired from the inexhaustible sun, wind and water. Among all the problems that hinder the development of Electric Vehicle (EV) industry, charging issue might be the most prominent one. In this paper, the service process of a charging station with Battery Energy Storage System (BESS) is analyzed by means of $Cram{\acute{e}}r$ - Lundberg model which has been intensively utilized in ruin theory. The service quality is proposed in two dimensions: the service efficiency and the service reliability. The arrival rate and State of Charge (SOC) upon arrival are derived from 2009 National Household Travel Survey (NHTS). The simulations are performed to show how the service quality is determined by the system parameters such as the number of servers, the service rate, the initial capacity, the charge rate and the maximum waiting time. At last, the economic analysis of the system is conducted and the best combination of the system parameters are given.

자료포락분석을 이용한 전기차 충전소 운영효율성 평가 (Evaluation of Operational Efficiency for Electric Vehicle Charging Stations Using Data Envelopment Analysis)

  • 손동훈;강영수;김화중
    • 산업경영시스템학회지
    • /
    • 제43권3호
    • /
    • pp.53-60
    • /
    • 2020
  • Evaluating the operational efficiency of electric vehicle charging stations (EVCSs) is important to understand charging network evolution and the charging behavior of electric vehicle users. However, aggregation of efficiency performance metrics poses a significant challenge to practitioners and researchers. In general, the operational efficiency of EVCSs can be measured as a complicated function of various factors with multiple criteria. Such a complex aspect of managing EVCSs becomes one of the challenging issues to measure their operational efficiency. Considering the difficulty in the efficiency measurement, this paper suggests a way to measure the operational efficiency of EVCSs based on data envelopment analysis (DEA). The DEA model is formulated as constant returns of output-oriented model with five types of inputs, four of them are the numbers of floating population and nearby charging stations, distance of nearby charging stations and traffic volume as desirable inputs and the other is the traffic speed in congestion as undesirable one. Meanwhile, the output is given by the charging frequency of EVCSs in a day. Using real-world data obtained from reliable sources, we suggest operational efficiencies of EVCSs in Seoul and discuss implications on the development of electric vehicle charging network. The result of efficiency measurement shows that most of EVCSs in Seoul are inefficient, while some districts (Nowon-gu, Dongdaemun-gu, Dongjak-gu, Songpa-gu, Guro-gu) have relatively more efficient EVCSs than the others.

ESS 가치평가 기반 PV-ESS 연계 EV 충전스테이션 사업 타당성 분석 (Economic Feasibility Analysis of Electrical Vehicle Charging Station Connected with PV & ESS based on ESS Valuation)

  • 이지현;제갈성;정용찬;윤아윤
    • Current Photovoltaic Research
    • /
    • 제11권4호
    • /
    • pp.124-133
    • /
    • 2023
  • In order to deploy the large-scale energy storage (ES) service in the various industry, it is very important to develop a business model with high technological and economic feasibility through detailed valuation of cost and expected benefits. In relation to this, this paper established an optimal scheduling plan for electric vehicle charging stations connected with photovoltaic (PV) and ES technologies in Korea using the distributed energy resource valuation tool and analyzed the feasibility of the project. In addition, the impact of incentives such as REC (Renewable Energy Certificate) to be given to electric vehicle charging stations in accordance with the relevant laws to be revised in the future was analyzed. As a results, the methodology presented in this paper are expected to be used in various ways to analyze the feasibility of various business models linked to renewable energy and ES technologies as well as the electric vehicle market.