• Title/Summary/Keyword: electric resistance

Search Result 1,444, Processing Time 0.027 seconds

Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Lim, Sung-Hun;Cho, Yong-Sun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

Indium Tin Oxide Based Reflector for Vertical UV LEDs (자외선 수직형 LED 제작을 위한 Indium Tin Oxide 기반 반사전극)

  • Jung, Ki-Chang;Lee, Inwoo;Jeong, Tak;Baek, Jong Hyeob;Ha, Jun-Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2013
  • In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a $1mm{\times}1mm$ vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.

Preparation of Permselective Membrane by Mean of a Radiation-Induced Grafting (방사선 그래프트에 의한 반투막 제조연구)

  • Young Kun Kong;Hoon Seun Chang;Chong Kwang Lee;Jae Ho Choi
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • By controlling both the means of grafting and the cast-solution components, no degradation and dimensional change of radiation-induced graft polymerization were found. The electric resistance of styrene-cellulose acetate grafts increases with increasing styrene content, while those for the hydrophilic monomers show no marked effect. In comparison with the grafted cellulose acetate membrane by simultaneous irradiation method, the appearance of the grafted membrane by post-polymerization method was not markedly changed irrespective of the percent of grafting and radiation dose of electron beam or ${\gamma}$-ray. The combination of crosslinking agents such as divinyl benzene (OB) or trimethyl propane triacrylate (TMPT) in the VP:St:BPO system leads to gradual increase of the percent of grafting. The activation energy for grafting of St:VP:BPO solution onto cellulose acetate membrane was determined to be about 21.8 Kcal/mole over the range of 55$^{\circ}$-8$0^{\circ}C$. The initial rate of grafting (in %/hr) is proportional to the power 0.76 for dose intensities.

  • PDF

A Study on the Standard Preparation for Cab Design of EMU with the 180km/h of Maximum Speed (180km/h급 간선형 전기동차 운전실 설계기준 마련 연구)

  • Lhim, Jea-Eun;Jung, Do-Won;Kim, Chi-Tae
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1229-1234
    • /
    • 2009
  • The rolling stocks of KORAIL are KTX, Saemaulho Multiple Unit(PP), New Electrical Locomotive(DL), Electrical Locomotive(EL), Diesel Locomotive, Metropolitan Commuter Train(CDC), VVVF and Resistance Controlled Multiple Unit, etc. EMU with the maximum speed of 150km/h is under the test run at the moment. Electrical Multiple Units for mainlines with 180km/h speed are supposed to be introduced as a substitute for Saemaulho Multiple Unit which is scheduled to be out of service. But the specification standard for the control board design of train driver's cab does not exist and there is no a study for layout and type of controlling device with driver's ergonomical approach. That's why the types of controller and operating are different from rolling stocks, which has high possibility of driver's human error and needs education whenever a new car comes in. Based on the opinion poll of drivers, design specification of safety engineering and ergonomics for controlling devices and safety facilities can improve exact control for devices and deal quickly with an emergency so as to improve rolling stock safety and operational efficiency.

  • PDF

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.

Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties

  • Kim, Jeong-Nam;Choi, Min-Kee;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.413-416
    • /
    • 2008
  • A synthesis route to ordered mesoporous carbons with controllable nitrogen content has been developed for high-performance EDLC electrodes. Nitrogen-doped ordered mesoporous carbons (denoted as NMC) were prepared by carbonizing a mixture of two different carbon sources within the mesoporous silica designated by KIT-6. Furfuryl alcohol was used as a primary carbon precursor, and melamine as a nitrogen dopant. This synthesis procedure gave cubic Ia3d mesoporous carbons containing nitrogen as much as 13%. The carbon exhibited a narrow pore size distribution centered at 3-4 nm with large pore volume (0.6-1 cm3 g-1) and high specific BET surface area (700-1000 m2 g-1). Electrochemical behaviors of the NMC samples with various N-contents were investigated by a two-electrode measurement system at aqueous solutions. At low current density, the NMC exhibited markedly increasing capacitance due to the increase in the nitrogen content. This result could be attributed to the enhanced surface affinity between carbon electrode and electrolyte ions due to the hydrophilic nitrogen functional groups. At high current density conditions, the NMC samples exhibited decreasing specific capacitance against the increase in the nitrogen content. The loss of the capacitance with the N-content may be explained by high electric resistance which causes a significant IR drop at high current densities. The present results indicate that the optimal nitrogen content is required for achieving high power and high energy density simultaneously.

Solar CO2-Reforming of Methane Using a Double-Layer Absorber (더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Kim, Dong-Yeon;Shin, Il-Yoong;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.80-86
    • /
    • 2011
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber - the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam - was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

The Radiation Safety Management in the Animal Hospital Using Inspection Standard of Diagnosis Radiation System (진단용 방사선발생장치의 검사기준을 적용한 동물병원의 방사선 안전관리)

  • Kim, Sang-Woo;Rhim, Jea-Dong;Han, Dong-Kyoon;Seoung, Youl-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • The purpose of this study was to investigate the actual conditions of radiation safety supervision in animal clinics using inspection standard of X-ray generator for diagnosis. The surveys for inspection standard system, equipment condition, and safety supervision were carried out in 18 animal clinics randomly. The inspection standard included reproducibility of dose exposure, kVp, mAs, collimator accuracy test, collimator luminance test, X-ray view box luminance test, grounding system equipment test and external leakage current test. The surveys of equipment condition and safety supervision used one-on-one interview with 5 points measurement. As a result, 44.44% of reproducibility of dose exposure was proper, 81.25% of kVp test was good, and 100% of mAs test was appropriate. Also, 66.66% of collimator accuracy test was proper, 61.11% of collimator luminance test was good, 53.13% of X-ray view box luminance test was suitable. In addition, only 5.55% of grounding system equipment and ground resistance was proper, 63.64% of external leakage current test was appropriate in grounding system equipment test. The 100mA electric capacity of X-ray generator for diagnosis was popular with 44.44%, and its 55.56% was purchased used equipment. Monthly average of less than 50 times (61.11%) was top frequency in use, and no animal clinic had a thermo-luminescence dosimeter(TLD). The 16 animal clinics with radiation safety zone and 2 without radiation safety zone were appeared.