• Title/Summary/Keyword: electric power rates

Search Result 206, Processing Time 0.026 seconds

Oxyfluorination of Pitch-based Activated Carbon Fibers for High Power Electric Double Layer Capacitor (고출력 전기이중층 캐패시터를 위한 핏치계 활성탄소섬유의 함산소불소화 처리)

  • Jung, Min-Jung;Ko, Yoonyoung;Kim, Kyung Hoon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.638-644
    • /
    • 2017
  • Pitch based activated carbon fibers for electric double layer capacitor (EDLC) electrodes were treated by oxyfluorination via varying the ratio of fluorine and oxygen gases to improve high power property. As the partial pressure of fluorine increased, the oxyfluorinated activated carbon fibers showed an increase of linear fluorine functional groups. While the oxygen functional groups increased, no changes was observed with respect to the partial gas pressure. The specific surface area and pore volume decreased due to the etching reaction on the activated carbon fiber surface through oxyfluorination, but the mesopore volume increased about 4.5 times. In the case of activated carbon fibers treated with 50% of the fluorine gas partial pressure, the specific capacitance increased to about 29% and 61% at scan rates of 5 and 50 mV/s, respectively. The improvement of the specific capacitance was believed to be due to the introduction of oxygen and fluorine functional groups on the activated carbon fiber surface and the increase of mesopores through oxyfluorination.

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

A Study on the Application of Two-dosimeter Algorithm to Estimate the Effective Dose in an Inhomogeneous Radiation Field at Korean Nuclear Power Plants (원전 불균일 방사선장하에서 유효선량 평가를 위한 복수선량계 알고리즘 적용방안 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.151-160
    • /
    • 2008
  • In Korean nuclear power plants (NPPs), two thermoluminescent dosimeters (TLD) were provided to workers who work in an inhomogeneous radiation field; one on the chest and the other on the head. In this way, the effective dose for radiation workers at NPPs was determined by the high deep dose between two radiation dose from these TLDs. This represented a conservative method of evaluating the degree of exposure to radiation. In this study, to prevent the overestimation of the effective dose, field application experiments were implemented using two-dosimeter algorithms developed by several international institutes for the selection of an optimal algorithm. The algorithms used by the Canadian Ontario Power Generation (OPG) and American ANSI HPS N13.41, NCRP (55/50), NCRP (70/30), EPRI (NRC), Lakslumanan, and Kim (Texas A&M University) were extensively analyzed as two-dosimeter algorithms. In particular, three additional TLDs were provided to radiation workers who wore them on the head, chest, and back during maintenance periods, and the measured value were analyzed. The results found no significant differences among the calculated effective doses, apart from Lakshmanan's algorithm. Thus, this paper recommends the NCRP(55/50) algorithm as an optimal two-dosimeter algorithm in consideration of the solid technical background of NCRP and the convenience of radiation works. In addition, it was determined that a two-dosimeter is provided to a single task which is expected to produce a dose rate of more than 1 mSv/hr, a difference of dose rates depending on specific parts of the body of more than 30%, and an exposure dose of more than 2 mSv.

Decomposition of CFC-12($CCl_2F_2$) by Discharge Plasma (방전 플라스마에 의한 CFC-12($CCl_2F_2$)의 분해)

  • 강현춘;우인성;황명환;안형환;이한섭;조정국;강안수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • Decomposition efficiency, power consumption, and applied voltage of CFC(Chlorofluorocatbon) were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of CFC-12 with various electric frequencies(5~50kHz). flow rates (100~1,000mL/min), initial concentrations(100~1,000ppm), electrode materials(W, Cu, Al). electrode thickness(1, 2, 3mm) and reference gases($N_2$, $O_2$, air) were measured and the products were analyzed with FT-IR. Experimental results showed that at the frequency of 10kHz, the highest decomposition efficiency of 92.7% for CFC-12 were observed at the power consumptions of 29.6W. respectively, and that decomposition efficiency decreased with increasing frequency above 20kHz and decomposition efficiency per unit power were 3.13%/W for CFC-12. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3m. As the electrode material, decomposition efficiency was in order that tungsten(W), copper(Cu), aluminum (Al). Decomposition of CFC-12 in the reference gas of $N_2$ showed the highest efficiency among three reference gases, and then the effect of reference gas on the decomposition efficiency decreased in order of air and $O_2$. The optimum power for the maximum decomposition efficiency was 25.3W for CFC.

  • PDF

The Calculation Method of Shielding Coefficient of Neutral Line against an Induced Voltage by an Aerial Power Distribution Line Reflecting the Principle of Earth Return Current (가공 배전선의 전자유도전압에 대하여 대지 귀로전류 원리를 반영한 중성선 차폐계수 계산 방법)

  • Lee, Sangmu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.86-91
    • /
    • 2016
  • To solve the problem of the excessive error caused by using a single value for the shielding effect of the neutral line of an electric power distribution line in the calculation of the voltage it induces in a telecommunication line, the general expression that was previously developed to reflect the mechanism of voltage induction by a distribution line with multiple grounds is employed in this paper to represent the relationship between the leakage current rates at each ground pole. In this way, the formula for calculating the shielding effect of the neutral line can be factorized against the unbalanced current flowing in the neutral line, which is the root current of induction. This shielding coefficient of the neutral line is not constant, but can vary when a range of induced voltages is generated in the whole power distribution line. The calculation method developed herein reduces the error rate to one tenth of that of the existing calculation result in the case of overestimation and increases it by 14% in the case of underestimation.

Design and Impact Analysis of Time-Of-Use Pricing based on Progressive Pricing (누진제기반 계시별요금제 설계 및 효과 분석)

  • Cho, Kyu-Sang;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2020
  • Current residential electricity rates, which are charged regardless of consumption patterns, have a problem of restricting consumer choice. In order to improve the problem, the Korea government started a demonstration project based on Time-Of-Use(TOU) pricing from September 2019. However, the analysis of its effect is still limited. This study analyzed the changes and limitations of TOU pricing compared to the current progressive pricing. The result showed that the high rate payer's bill decreased by up to 33.8 % while the low rate payer's bill increased by up to 117.7 %. This can lead to the problem of accepting electricity rates from a social point of view. In this study, TOU pricing based on progressive pricing was proposed to overcome the problem. The results presented the rate changes depending on the power consumption patterns while decreasing the average rate change from 32 % to -1.9 %. It means that the proposed pricing can support the TOU effect while maintaining the framework of the existing progressive pricing.

Separation and Recovery of F-gases (불화 온실 가스 저감 및 분리회수 기술의 연구개발 동향)

  • Nam, Seung-Eun;Park, Ahrumi;Park, You-In
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.189-203
    • /
    • 2013
  • F-gases, gases containing fluorine such as perfluorocarbons (PFCs), sulfurhexafluoride ($SF_6$), nitrogen trifluoride ($NF_3$) are known to have green house effects. Although the net emission rates of gases containing fluorine are much lower than those of $CO_2$, their contribution to global warming cannot be ignored because of their extremely high global warming potential (GWP). F-gases mainly have been used for a variaty of applications in the semiconductor/LCD processes and in the electric power distribution industry of the national key industry. One of practical solutions of controlling the emission rates of F-gases is to reuse by separation and recovery of F-gases of low concentration from the gases mixtures with nitrogen or air. This work investigates some methods for F-gases recovery and separation around the membrane-based process.

A Study on Dynamic Optimization of Time-Of-Use Electricity Rates (계절.시간대별 차등 전기요금의 동태적 최적화에 관한 연구)

  • 김동현;최기련
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.87-92
    • /
    • 1996
  • This paper formulates dynamic optimization model for Time-Of-Use Rates when a electric power system consists of three generators and a rating period is divided into three sub-periods. We use Pontryagin's Maximum Principle to derive optimal price and investment policy. Particularly the cross-price elasticities of demand are considered in the objective function. We get the following results. First, the price is equal to short-run marginal cost when the capacity is sufficient. However, if the capacity constraint is active, the capacity cost is included in the price. Therefore it is equal to the long-run marginal cost. Second, The length of rating period affects allocation of capacity cost for each price. Third, the capacity investment in dynamic optimization is proportional to the demand growth rate of electricity. However the scale of investment is affected by not only its own demand growth rate but also that of other rating period.

  • PDF

Relationship between brittleness index of hard rocks and TBM penetration rates (경암의 취성도와 TBM 순굴진율간의 관계)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Kyoung-Yul;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.611-634
    • /
    • 2017
  • In rapid urbanization, demand for utility tunnel increases more, and tunnel boring machine (TBM) has been used widely. Prediction of TBM penetration rate is important for proper estimation of construction period and cost. Although there are several methods, such as NTNU model and CSM model that require many input parameters, fundamental understanding on correlations between rock properties and TBM penetration rate is critical. In this study, we explored the brittleness indices of hard rocks according to various definitions, and the correlations between the brittleness indices and the TBM penentration rates.