• Title/Summary/Keyword: electric potential drop

Search Result 15, Processing Time 0.027 seconds

Electrochemical Characteristics of Fine Soils in the Application of Electrokinetic Remediation (동전기력 복원공정 적용에 따른 세립토양의 전기화학적 특성 변화)

  • 고석오
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.85-94
    • /
    • 2002
  • Overall objective of this study was to evaluate the electrochemical characteristics of fine soils during the electrokinetic(EK) remediation. Zeta potential of kaolinite as a function of solution pH and surfactant concentration was investigated to make a relationship with electroosmotic flow direction and rate. During the EK experiments, pH of pore solution, electroosmotic permeability($k_e$), electric conductivity($\delta_e$) and voltage distribution was measured, respectively, The point of zero charge(PZC) of kaolinite was estimated to be about 4.2 and the zeta potential of kaolinite above PZC was more negative as solution pH increased. Sorption of surfactants on the kaolinite altered the zeta potential of kaolinite. resulting from the variation of electrochemical characteristics of kaolinite surface. hs the EK experiment progressed, low pH was predominant over most of the kaolinite specimen and thus resulted in very low mass and charge flow. The $k_e$ and $\delta_e$ was also affected by the variation of voltage drop across the EK column with time. Results from this study implied that zeta potential of kaolinite affected by the pH variation of pore solution and voltage distribution in soil column played important role in the determination of mass and charge flow during EK process. It was also suggested that pH adjustment or addition of suitable sorbates could alter the electrochemical characteristics of soil surface and thus maintain high mass and charge flow rate with time.

The Effect of Temperature and Microstructure on High Temperature Fatigue Crack Propagation Property in Ti-3Al-2.5V Alloy (Ti-3Al-2.5V 합금의 고온피로에 미치는 온도 및 미세조직의 영향)

  • 김현철;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.198-207
    • /
    • 1998
  • To determine the effect of temperature and microstructure on the fatigue crack propagation behavior in Ti-3Al-2.5V alloy, experimental investigations have been carried out with the specimens of different temperatures and different volume fractions of prime $\alpha$-phase. The temperatures employed were room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency of 20Hz. To obtain the different volume fractions of the primary $\alpha$-phase, specimens were solution-treated at $\alpha$+$\beta$ and above the $\beta$ region. From the experimental results, following conclusions were obtained. (1) ΔKth was observed to increase with the less volume fraction of the primary $\alpha$-phase. (2) As the temperature increased. (3) Microstructures having more primary $\alpha$-phase showed higher strength at the high temperatures.

  • PDF

The Effect of Microstructure and Temperature on Fatigue Crack Propagation in Ti-3A1-2.5V A11oy (Ti-3A1-2.5V 합금의 피로균열전파특성에 미치는 미세조직 및 온도의 영향)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.58-66
    • /
    • 1997
  • Ti alloys, with the advantageous tensile strength/density ratio and the chemical stability, have been used widely in the aerospace and chemical engineering industries and their usages are still expanding in various industrial areas. In the automotive industry, because of their superior merits of weight reduction and fuel saving, Ti alloys are expected to be used as various part materials including connecting rods, engine valves, springs and retainers, which are all subjected to the fatigue loads. In this study, using Ti-3A1-2.5V, the effects of temperature and microstructure change on fatigue crack propagation has been investigated. Five different microstructures were tested at the temperatures of room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency 20Hz. Some of the conclusions obtained are as follows: (1)Microstructurally, the morphology of less $\alpha$-phase and finer lamellar structure of $\alpha$ and $\beta$-Ti showed better registance to the fatigue crack propagation. (2)Fatigue crack growth rate increased with test temperature.

  • PDF

Corrosion Behavior of Anode Current Collectors in Molten Carbonate Fuel Cells (용융탄산염 연료전지 Anode부 집전판의 부식특성)

  • Han, Won-Kyu;Ju, Jeong-Woon;Shin, Jung-Cheol;Kang, Sung-Goon;Jun, Joong-Hwan;Lim, Hee-Chun
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2008
  • The corrosion and degradation factors of a current collector in a molten carbonate fuel cell (MCFC) were investigated to determine the optimized coating thickness of nickel on STS316L. The results show that the surface morphology and electrical properties depended on the nickel coating thickness. The surface morphology gradually changed from a flat to a porous structure along as the nickel coating thickness decreased, and the electrical resistance of the nickel-coated STS316L increased as the nickel coating thickness decreased. This can be attributed to the diffusion of elements of Fe and Cr from the substrate through the nickel grain boundaries. Additionally, carburization in the metal grains or grain boundaries in an anodic environment was found to influence the electrical properties due to matrix distortion. The resistance of Cr-oxide layers formed in an anodic environment causes a drop in the potential, resulting in a decrease in the system efficiency.

REVIEW OF DYNAMIC LOADING J-R TEST METHOD FOR LEAK BEFORE BREAK OF NUCLEAR PIPING

  • Oh, Young-Jin;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.639-656
    • /
    • 2006
  • In order to apply the leak before break (LBB) concept to nuclear piping systems, the dynamic strain aging effect of low carbon steel materials has to be taken into account, in compliance with the requirements of the Korean Standard Review Guide (KSRG) 3.6.3-1. For this goal, J-R tests are needed for a range of various temperatures and loading rates, including dynamic loading conditions. In the dynamic loading J-R test, the unloading compliance method can not be applied to measure the crack growth and direct current potential drop (DCPD) method; this method also has a problem defining the crack initiation point. The normalization method is known as a very useful method to determine the J-R curve under dynamic loading because it does not need additional equipment or complicated loading sequences such as electric current or unloading. This method was accepted by the American Society for Testing and Materials (ASTM) as a standard test method E1820 A15 in 2001. However, it has not yet been clearly verified yet if the normalization method is sufficiently reliable to be applied to LBB. In this study, the basic background of the J-integral, LBB and dynamic loading J-R test are explained, and the current status for dynamic loading J-R test methods are reviewed from the view point of LBB for nuclear piping. In particular, the theoretical and historical background of the normalization method which has received attention recently, is summarized. Recent studies for this method are introduced and future works are suggested that may improve the reliability of LBB for nuclear piping.