• Title/Summary/Keyword: electric lens

Search Result 70, Processing Time 0.035 seconds

Force Control of Small Lens Molding System (소형렌즈 성형시스템의 힘제어에 관한 연구)

  • Kim, Gab-Soon;Kuk, Gum-Hwan;Shin, Hyi-Jun;Kim, Hyeon-Min;Jung, Dong-Yean
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1091-1096
    • /
    • 2007
  • This paper describes the development of a small lens molding system for manufacturing the small lens like lens of a cellular phone, a small digital camera and so on. In order to manufacture a small lens, firstly, the raw material for lens with spherical shape should be manufactured by processing a glass, secondly, the mold inserted the raw material for lens should be heated till its molding temperature in the electric furnace, finally, the small lens is manufactured by applying the force using pressuring control system. In this paper, the small lens molding system with the function of force control and velocity control was developed. It is composed of a electric furnace and its temperature control system, a pressuring control system, a body, and so on. The temperature characteristic test of the electric furnace, and the force and velocity characteristic test of the pressuring control system were carried out. It was confirmed that the developed system had good functions for manufacturing a small lens.

  • PDF

Development of Molding System for Manufacturing a Small Lens and Its Force Control (소형렌즈 성형시스템 개발 및 힘제어에 관한 연구)

  • Kuk, Gum-Hwan;Jung, Dong-Yean;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.57-64
    • /
    • 2008
  • This paper describes the development of a small lens molding system for manufacturing the small lens like lens of a cellular phone, a small digital camera and so on. In order to manufacture a small lens, firstly, the raw material for lens with spherical shape should be manufactured by processing a glass material, secondly, the mold inserted the raw material for lens should be heated till its molding temperature in the electric furnace, finally, the small lens is manufactured by applying the force using pressuring control system. In this paper, the small lens molding system with the function of force control and velocity control was developed. It is composed of an electric furnace and its temperature control system, a pressuring control system, a body, and so on. The temperature characteristic test of the electric furnace, the force and velocity characteristic test of the pressuring control system were carried out. It was confirmed that the developed system had good functions for manufacturing a small lens.

A Review: All Solid-state Electroactive Polymer-based Tunable Lens (고체 전기활성 고분자 기반 가변 렌즈의 연구동향)

  • Shin, Eun-Jae;Ko, Hyun-U;Kim, Sang-Youn
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In this paper, we review papers which report to the all solid-state electroactive polymer-based tunable lens. Since electroactive polymer-based tunable lenses change their focal length by responding to electric stimuli, it can be minimized the size and weight of optical modules. Thus, it has been received attention in the robot, mobile device and display industry. The all solid-state electroactive polymer-based tunable lenses can be classified into two categories depending on the classification of materials: ionic electroactive polymer-based lenses and non-ionic electroactive polymer-based lenses. Most of the ionic electroactive polymer-based tunable lenses are fabricated with ionic polymer-metal composite. So, the ionic electroactive polymer-based tunable lenses can be operated under low electric voltage. But small force, slow recovery time and environmental limitation for operation has been pointed to the disadvantage of the lenses. The non-ionic electroactive polymer-based tunable lenses are classified again into two categories: dielectric polymer-based tunable lenses and polyvinylchloride gel-based tunable lenses. The advantage of the dielectric polymer-based tunable lenses is fast response to electric stimuli. But the essential flexible electrodes degrade performance of the lens. Polyvinylchloride gel-based tunable lens has reported impressive performance without flexible electrodes.

Rigorous Analysis of Viewing Zone for 3D Display with Electric-field-driven Liquid Crystal Lens (액정 전계 렌즈 기반 3차원 디스플레이 장치의 엄정한 시청영역 분석)

  • Kim, Tae-Hyeon;Kim, Bong-Sik;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.494-498
    • /
    • 2016
  • In this paper, we proposed the 3-dimenstional (3D) analysis for calculating the optical characteristics of an autostereoscopic display with electric field driven liquid crystal (ELC) lens. From 3D analysis considering the slanting of lens, we calculate the cross-talk of each images and the distortion of viewing zone. Using geometric opics and extended Jones matrix method (EJMM), phase retardation of ELC lens according to position is calcuated and then optical path difference in 3D space considering tilt and azimuth angle of incident light is gotten. Then, intensity distribution is presented in the space. Through camparing the intensity distribution using ideal lens with the ELC lens, we identify the noise and image distortion of ELC lens. As a result, this analysis is expected to provide optimum design conditions for realistic and rigorous 3D display with ELC lens.

Analytical Study of the Image Reconstruction of Fourier Holograms Using Varifocal Electric-Field-Driven Liquid Crystal Fresnel Lenses

  • Kim, Taehyeon;Lee, Seung-Chul;Park, Woo-Sang
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.115-120
    • /
    • 2020
  • A novel method is proposed for controlling the distance of an image plane in Fourier holograms using varifocal electric-field-driven liquid-crystal (ELC) lenses. Phase Fresnel lenses are employed to reduce the thickness and response time of the ELC lenses. The voltages applied to the electrodes of the ELC Fresnel lens are adjusted so that the lens has the same retardation distribution as an ideal lens. The focal length can be controlled by changing the retardation distribution with the applied voltages. Simulations were conducted for the image reconstruction of Fourier holograms with various focal lengths of the ELC Fresnel lenses. The simulation results indicate that the distance of the image plane can be properly controlled with the varifocal ELC Fresnel lens.

A Study on the Influence of Pure Iron Purity of Electric Lens on the Electron Beam Control (전자빔 가공기의 전자렌즈 순철순도가 빔 제어에 미치는 영향)

  • Lee Chan-Hong;Ro Seung-Kook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.149-153
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. The polepieces of these lenses are usually made with high purity iron which is hard to fabricate and very expensive. In this paper, the possibility of using polepiece of object lens composed with pure iron and low carbon steel was examined to reduce cost. The magnetic field at object lens was calculated with finite element method, and practical focusing qualities of SEM pictures were observed comparing for the object lens polepieces with pure iron and two type of composed with low carbon steel.

  • PDF

New analysis method of electrostatic lens for CRT

  • Seok, J.M.;Ham, Y.S.;Lee, J.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.395-398
    • /
    • 2002
  • The spherical aberration and optical integer (f) of the electron gun's main lens in color CRT is obtained, using electron beam trajectory. A spherical aberration is obtained from the relation between the object plane and the image of a beam trajectory. To analyze beam profile, 3rd and 1st order coefficient were obtained and used. It is shown that, in practice, they are applied to electron gun design.

  • PDF

Optimal Design of Electric Field Driven Liquid Crystal Fresnel Lens Using Taguchi's Method (다구찌 실험계획법을 이용한 액정 전계 프레넬 렌즈의 최적 설계)

  • Kim, Bong-Sik;Kim, Jong-Woon;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • A rigorous electro-optical simulation and ray tracing for an electric field driven liquid crystal Fresnel lens was proposed to obtain design parameters of the electrode pattern of the Fresnel lens. The optimal design was carried out using Taguchi's experimental method for 17.1"($368{\times}229.5$ mm) wide LCD panels with 9 views. For the calculation of the distribution of liquid crystal molecules and the optical transmission of the panel, finite difference method and extended Jones matrix method were used to deal effectively with highly nonlinear and complicated motional equations of the liquid crystal molecules and to obtain the oblique transmission characteristics of the LCD panel. As simulation results, the optimal lengths of the 3 electrodes of the Fresnel lens are 4.0 ${\mu}m$, 30 ${\mu}m$ and 83 ${\mu}m$, respectively, and the locations of the second and third electrodes are 32.9-33.0 ${\mu}m$ and 45.9-46.0 ${\mu}m$, respectively. The optimal applied voltage of the 3 electrodes are found to be 5.75 V, 7.80 V and 11.9 V, respectively.

Design of the Lens Structure for COB type LED Safety Luminaires (COB형 LED 보안등을 위한 렌즈 구조 설계)

  • Jang, Sung-Whan;Jung, Byoung-Jo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.1-8
    • /
    • 2013
  • The study carried out in this dissertation focuses on the lens structure design and the light distribution for LED safety luminaires using COB type LED module. Lens structures for LED lights has been designed 1) to induce light diffusion by dual process of internal reflection and refraction, 2) to minimize the inherent LED lights' glittering, and 3) to have uniform brightness. The lens designed with the proposed structures function as diffusers for the divergence of the LED lights so that they form a wide angle of view and adjust the light distribution. We designed of lens with stable uniformity factor and average roughness using aspheric optics property. Finally we made the analysis data of the simulated data.

An Optical Analysis of Viewing-angle Switchable Display Using ELC Lens (액정 전계 렌즈 기반의 시청구간 전환가능 디스플레이의 광학적 해석)

  • Jeong, Shin-Yong;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.241-245
    • /
    • 2017
  • This paper proposes a private display that can adjust viewing angles by using an electric-field-driven (EFD) LC Lens. The EFD LC Lens design and simulation were analyzed by using the Extended Jones Matrix Method. The conventional method for attaching a private film to the display was difficult. In order to solve this problem, in this study, by using the EFD LC Lens, we devised a method that can view images more conveniently. We analyzed the luminance and illumination of the optical viewing distance by using the Extended Jones Matrix Method. We also measured the intensity of the viewing angles. The simulation attached the EFD LC Lens to the 14" Full HD RGB stripe wide panel. We calculated the relative luminance distribution and the luminance distribution on the viewing angle of the image at the optimum viewing distance of 60 cm, using the EFD LC Lens and the lenticular lens. The proposed method could be used to design private displays that can adjust the viewing angle of the EFD LC Lens.