• Title/Summary/Keyword: electric impedance

Search Result 583, Processing Time 0.034 seconds

A Study on a Substation Static Load Model Including the Mobility of a Railway Load (철도 부하의 이동성을 반영한 변전소 정태부하모델링 수립에 대한 연구)

  • Chang, Sang-Hoon;Youn, Seok-Min;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.315-323
    • /
    • 2015
  • Nowadays, it is expected that mobility loads such as electric railways and electric vehicles will be penetrated gradually and affect on the power system stability by their load characteristics. Various researches have been carried out about electric vehicles for the recent decade though the load of electric railway could be forecasted because of the specified path and timetable, is a field with a long historic background. Some precise 5th polynomial equations are required to analyze the power system stability considering mobility load to be increased in the immediate future while the electric railway dispatching simulator uses load models with constant power and constant impedance for the system analysis. In this paper, seasonal urban railway load models are established as the form of 5th polynomial equations and substation load modeling methods are proposed merging railway station load models and general load models. Additionally, load management effects by the load modeling are confirmed through the case studies, in which seasonal load models are developed for Seoul Subway Line No. 2, Gyeongui Line and Airport Railroad and the substation load change is analyzed according to the railway load change.

Stability Analysis of FCHEV Energy System Using Frequency Decoupling Control Method

  • Dai, Peng;Sun, Weinan;Xie, Houqing;Lv, Yan;Han, Zhonghui
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.490-500
    • /
    • 2017
  • Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system still has rapidity and reliability. The distributed power system (DPS) of EV requires DC-DC converters to achieve the desired voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of DPS. In this study, closed-loop impedances of interleaved half-bridge DC-DC converter and phase-shifted full-bridge DC-DC converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are provided to demonstrate the feasibility of the energy management system and the control method.

Prediction Method of End of Charge Voltage using Battery Parameter Measurement (배터리 파라미터 측정을 이용한 충전종지전압 예측기법)

  • Kim, Ho-Yong;Wang, Yi-Pei;Park, Seong-Mi;Park, Sung-Jun;Son, Gyung-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.387-396
    • /
    • 2022
  • Recently, e-Mobility, which is a personal mobility device such as an electric bicycle or an electric scooter, is rapidly emerging. However, since E-Mobility has various voltage systems due to the characteristics of its products, it is essential for companies that operate them to use multiple dedicated chargers. A universal charger capable of charging batteries of various voltage systems with one charger is required to reduce the cost of purchasing and managing multiple dedicated chargers. For this, information on the EOC(End of Charge) is essential. In order to know the EOC, it is necessary to detect the internal impedance of the battery. However, the internal impedance of the battery changes according to various conditions such as SOH(State Of Health), SOC(State Of Charge), and ambient temperature. By observing the change in these parameters, the state of the battery can be diagnosed and the EOC can be predicted. In this paper, we propose an algorithm to analyze the battery's internal impedance and to predict the EOC, in order to acquire information on the EOC of the battery, which is an essential requirement of a universal charger.

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil (토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.245-251
    • /
    • 2013
  • An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

Common Model EMI Prediction in Motor Drive System for Electric Vehicle Application

  • Yang, Yong-Ming;Peng, He-Meng;Wang, Quan-Di
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.205-215
    • /
    • 2015
  • Common mode (CM) conducted interference are predicted and compared with experiments in a motor drive system of Electric vehicles in this study. The prediction model considers each part as an equivalent circuit model which is represented by lumped parameters and proposes the parameter extraction method. For the modeling of the inverter, a concentrated and equivalent method is used to process synthetically the CM interference source and the stray capacitance. For the parameter extraction in the power line model, a computation method that combines analytical method and finite element method is used. The modeling of the motor is based on measured date of the impedance and vector fitting technique. It is shown that the parasitic currents and interference voltage in the system can be simulated in the different parts of the prediction model in the conducted frequency range (150 kHz-30 MHz). Experiments have successfully confirmed that the approach is effective.

EMTDC Modeling Method of DC Reactor type Superconducting Fault Current Limiter

  • Lee, Jaedeuk;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.56-59
    • /
    • 2003
  • As electric power systems grow to supply the increasing electric power demand short-circuit current tends to increase and impose a severe burden on circuit breakers and power system apparatuses. Thus, all electric equipment in a power system has to he designed to withstand the mechanical and thermal stresses of potential short-circuit currents. Among current limiting devices, Fault Current Limiter (FCL) is expected to reduce the short-circuit current. Especially, Superconducting Fault Current Limiters (SFCL) offer ideal performance: in normal operation the SFCL is in its superconducting state and has negligible impedance, in the event of a fault, the transition into the normal conducting state passively limits the current. The SFCL using high-temperature superconductors offers a positive resolution to controlling fault-current levels on utility distribution and transmission networks. This study contributes to the EMTDC based modeling and simulation method of DC Reactor type SFCL. Single and three phase faults in the utility system with DC reactor type SFCLs have been simulated using EMTDC in order to coordinate with other equipments, and the results are discussed in detail.

Examination of Increasing Power Delivery Capacity with variable Tab Autotransformer (가변탭 변압기를 사용한 급전용량 증가 검토)

  • Lee, Chang-Mu;Han, Moon-Seub;Lee, Han-Min;Kim, Ju-Rak;Kim, Gil-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1163_1164
    • /
    • 2009
  • AC AT feeding method consists return circuits of electric train inserting in parallel between trolly line and feeding line and connecting neutral line to rail and FPW. Due to increasing train number, electric load at feeding system are increasing and collecting voltage of train are going down. To increase electric load and collecting voltage between trolly line and rail, the usefulness of new autotransformer are considered which variation of short impedance and change of line voltage is simulated with modified winding ratio of autotransformer from 1:1 to variable tab.

  • PDF

A Study on the Analysis of Harmonic Injection and Emission for Power System (전력계통 고조파 유입 유출 분석에 관한 연구)

  • Wang, Yong-Peel;Jeong, Jong-Won;Kim, Se-Dong;Kwak, No-Hong;Jeon, Young-Soo;Park, Sang-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.203-205
    • /
    • 2007
  • A method is proposed in this paper to determine the harmonic contributions of a customer at the point of common coupling. The method can quantify customer and utility responsibilities for limit violations caused by either harmonic source changes or harmonic impedance changes. It can be implemented in current power quality monitors and digital revenue meters. The method is comparison of measurement phase angles between harmonic voltage and current. The proposed method has been applied to the test system. The study results have indicated the accuracy of harmonic injection and emission for customer and utility.

  • PDF

Arc Fault Circuit Interrupter Design for Electrical Fire Protection (전기화재 방지를 위한 아크고장전류 차단기 설계)

  • Ban, Gi-Jong;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.220-225
    • /
    • 2006
  • Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, AFCI(arc fault circuit interrupter) is designed for the interruption of arc fault current which is occurred in the local electric network. This arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and high frequency. Conventional arc fault circuit interrupter does not have the arc current interrupt function. Hence, Arc current controller is designed for the interruption of arc fault current which has the modified arc characteristics.

AFCI algorithm design for electrical fire protection (전기화재 방지를 위한 AFCI 알고리즘 설계)

  • Ban, Gi-Jong;Choi, Sung-Dai;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1769-1770
    • /
    • 2006
  • Arc Fault is an electric discharge which is occurred in two opposite electrode. In this paper, AFCI(arc fault circuit interrupter) is designed for the interruption of arc fault current which is occurred in the local electric network. This arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and high frequency. Conventional interrupter does not have the arc current interrupt function. Hence, Arc fault circuit interrupter controller is designed for the interruption of arc fault current which has the modified arc characteristics.

  • PDF