• 제목/요약/키워드: electric double-layer capacitors

검색결과 58건 처리시간 0.02초

가정용 리튬배터리 ESS를 고려한 태양광 발전 하이브리드 PCS 특성에 관한 연구 (A Study on Characteristic of Hybrid PCS for Solar Power Generation Considering on a Residential Lithium Battery ESS.)

  • 황락훈;나승권;최병상
    • 한국항행학회논문지
    • /
    • 제26권1호
    • /
    • pp.35-45
    • /
    • 2022
  • 본 논문에서는 PV 시스템에서 태양광 발전 시스템의 완전한 동작을 위해 DC-DC 벅-부스트 컨버터와 MPPT (Maximum Power Point Tracking)제어 시스템에 대한 완전한 동작 시스템에 대해 모델링하고 시뮬레이션을 수행하여 양호한 동작을 확인하고자 한다. 이를 위해 이중층 커패시터(EDLC:Electric double-layer capacitors )를 사용한 순간전압강하 보상장치가 개발되어 적용되고 있다. 따라서 태양광 발전의 ESS(Energy Storage System)를 고려한 PCS(Power Conditioning System)를 제안하여 부하평준화를 통한 전력의 안정적인 공급을 확인한다. 본 논문에서는 순간전압강하 보상장치(DVR :Dynamic Voltage Restorer)에 사용되는 전기 이중층 커패시터에 비해 동일 사이즈 대비 에너지 밀도가 높은 하이브리드 커패시터(hybrid capacitor)를 적용하는 연구를 하였고, 단상 3[kW] 계통 연계형 태양광 전력변환기를 제안하였다.

전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성 (The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization)

  • 이병관;맹주철;이종규;윤중락
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

Performance of Electric Double Layers Capacitor Using Activated Carbon Materials from Rice Husk as Electrodes

  • Nguyen, Tuan Dung;Ryu, Jae Kyung;Bramhe, Sachin N.;Kim, Taik-Nam
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.643-648
    • /
    • 2013
  • Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + $Na_2CO_3$), and a combination of (KOH + $K_2CO_3$) as the chemical activating reagents. The activated carbon with the highest surface area (around $2000m^2/g$) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.

탄소 전극 형상 변화에 따른 전기화학 커패시터 특성 향상 (Improvement of Electrochemical Characteristics by Changing Morphologies of Carbon Electrode)

  • 민형섭;김상식;정덕수;최원국;오영제;이전국
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.544-549
    • /
    • 2009
  • Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m$^2$/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm$^2$.

다중 직렬 연결된 대용량 EDLC 모듈에 적합한 전압 밸런싱 기법에 대한 연구 (A Study of Voltage Balancing Method in Series-Connected EDLCs for High Power Applications)

  • 차대중;백지은;고광철
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.22-27
    • /
    • 2015
  • In this paper, the problem of voltage unbalancing in series-connected multiple electric double-layer capacitors(EDLCs) is studied. Good understanding of this problem is required in order to increase reliability and stability of an energy storage system comprising EDLCs. Existing methods to settle voltage unbalancing cannot mitigate the problem enough for each cell, since most method have been applied to each module. For equalizing between cells, Zener diode which is one of passive method have been well examined in literature. However, Zener have well not used in balancing due to heating problem. In addition, It is difficult to choose Zener diode fitted rating voltage of EDLC, because of its internal resistance. Thus, we proposed passive balancing using Zener diode by analyzing parasitic element of Zener and EDLC. To experimentally confirm the balancing effect, we compared in two occasions which are with and without passive. As a result, proposed passive balancing circuit mitigated unbalanced voltage gap between EDLCs.

활성탄소 전극의 제조방식에 따른 EDLC 특성비교 (Comparison of Electrochemical Properties of EDLCs using Activated Carbon Electrodes Fabricated with Various Binders)

  • 양선혜;전민제;김익준;문성인;김현수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.353-354
    • /
    • 2006
  • This work describes the effect of binders, such as carboxymethylcellulose (CMC), CMC+Polytetrafluoroethylene (PTFE) and PTFE, on the electrochemical and mechanical properties of activated carbon-electrode for electric double layer capacitor. The cell capacitors using the electrode bound with binary binder composed of CMC and PTFE, especially m composition CMC ; PTFE = 60 : 40 wt %, has exhibited the better rate capability and the lower internal resistance than those of the cell capacitor with CMC. On the other hand, the sheet type electrode kneaded with PTFE was bonded with conductive adhesive on Al foil. This cell capacitor using the electrode with PTFE exhibited the best mechanical properties and rate capability compared to the CMC and CMC+PTFE one These behaviors could be explained by the well-developed network structure of PTFE fibrils during the kneading process.

  • PDF

커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용 (Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application)

  • 김동현;김민상;제갈석;김지원;김하영;추연룡;김찬교;심형섭;윤창민
    • 유기물자원화
    • /
    • 제31권1호
    • /
    • pp.57-68
    • /
    • 2023
  • 본 연구에서는 커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유 형태로 제조하여 고에너지 EDLC용 탄소 소재로 활용하고자 하였다. 커피 폐기물은 분쇄과정을 거쳐 폴리비닐피롤리돈과 용매인 다이메틸폼아마이드에 혼합한 후 전기방사를 통해 커피 폐기물 기반의 섬유 형태(Bare-CWNF)의 물질로 만들었으며, 질소 분위기의 900℃에서 탄화를 진행하여 커피 폐기물 기반의 질소가 포함된 다공성 섬유 형태(Carbonized-CWNF)의 물질을 제조하였다. Carbonized-CWNF는 Bare-CWNF와 같이 섬유 형태를 유지하였으며 질소 함량 역시 유지되는 것을 확인하였다. 커피 폐기물의 탄화 탄소(Carbonized-CW)및 폴리아크릴로나이트릴 기반의 탄소섬유(Carbonized-PNF)를 Carbonized-CWNF와 -1.0-0.0V의 전압 범위에서 전기화학적 성능을 비교한 결과, Carbonized-CWNF가 가장 높은 비정전용량(123.8F g-1 @ 1A g-1)을 확보할 수 있었다. 이를 통해 커피 폐기물 기반의 질소가 함유된 다공성 탄소 섬유가 고에너지 EDLC(Electric double layer capacitor)용 전극으로 우수한 성능을 나타내는 것을 확인하였다. 최종적으로, 환경 오염의 원인이 되는 식물성 바이오매스 중 커피 폐기물을 활용하여 친환경성을 확보하였고, 식물성 바이오매스와 같은 폐기물을 슈퍼커패시터와 같은 고성능 에너지 저장 매체로의 탈바꿈 할 수 있는 가능성을 제시하였다.

Power Fluctuation Reduction of Pitch-Regulated MW-Class PMSG based WTG System by Controlling Kinetic Energy

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Yona, Atsushi;Senjyu, Tomonobu;Saber, Ahmed Yousuf
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.116-124
    • /
    • 2012
  • Wind is an abundant source of natural energy which can be utilized to generate power. Wind velocity does not remain constant, and as a result the output power of wind turbine generators (WTGs) fluctuates. To reduce the fluctuation, different approaches are already being proposed, such as energy storage devices, electric double layer capacitors, flywheels, and so on. These methods are effective but require a significant extra cost to installation and maintenance. This paper proposes to reduce output power fluctuation by controlling kinetic energy of a WTG system. A MW-class pitch-regulated permanent magnet synchronous generator (PMSG) is introduced to apply a power fluctuation reducing method. The major advantage of this proposed method is that, an additional energy storage system is not required to control the power fluctuation. Additionally, the proposed method can mitigate shaft stress of a WTG system. Which is reflected in an enhanced reliability of the wind turbine. Moreover, the proposed method can be changed to the maximum power point tracking (MPPT) control method by adjusting an averaging time. The proposed power smoothing control is compared with the MPPT control method and verified by using the MATLAB SIMULINK environment.