• 제목/요약/키워드: electric and eddy currents

검색결과 11건 처리시간 0.025초

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

송전선로 주변의 3차원 자기장 및 인체 유도 와전류 계산 (ELF 3D Magnetic Field and Eddy Current Calculation of Human Body Around Transmission Lines)

  • 명성호;이동일;신구용;한인수;박종근
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권10호
    • /
    • pp.485-491
    • /
    • 2002
  • Since Wertheimer and Leeper reported possible adverse health effects of magnetic field in 1979, worldwide researches on this issue have been conducted. More recently, the U.S. Congress instructed the NIEHS (National Institute of Environmental Health Sciences), NIH (National Institute of Health) and DOE (Department of Energy) to direct and manage EMF RAPID (Electric and Magnetic Fields Research and Public Information Dissemination) program aimed at providing scientific evidence to clarify the potential for health risks from exposure to extremely low frequency electric and magnetic fields(ELF-EMF). Although they concluded that the scientific evidence suggesting adverse health risks of ELF-EMF is weak, the exposure to ELF-EMF cannot be recognized as entirely safe. Therefore, the purpose of this article is to describe magnetic field 3-D calculation and to evluate eddy current of human body compare to international guide line recognized one of the basic problems. In open boundary problem, Magnetic field using FEM is not advantageous in the point of the division of area and the proposition of the fictitious boundary. Therefore, we induced the analytic equation of magnetic field calculations so but the finite line segment based on Biot-Savarts law Also, Eddy currents induced due to ELF-EMF magnetic field are computed. To calculate induced currents, impedance method is used in this paper, An example model of human head with resolution of 1.27cm is used. In this paper, We evaluate the magnetic field and eddy current of human head around 765 kV transmission lines compare to international guide line.

임피던스 경계조건을 이용한 유도가열 시스템의 해석 (Analysis of Induction Heating System using the Impedance Boundary Condition)

  • 김우균;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 1998
  • Induction heating is commonly used in process heating prior to metal working and in heat treationg, welding, and melting. For an analysis of induction heating system, it is necessary to calculate eddy currents in conductors induced by a source current. This study examines the use of the Impedance Boundary Condition for the reduction of the field problem encountered in the computation of eddy currents in non-magnetic and magnetic conductors with small penetration depths to a simpler exterior problem. The electric field intensities on the conductor surfaces computed by using the IBC are compared with the values obtained from the full region solution (i.e. without the use of IBC) and those agree well with the latter.

  • PDF

Computation of Super High-Resolution Global Ocean Model using Earth Simulator

  • Kim, Dong-Hoon;Norikazu Nakashiki;Yoshikatsu Yoshida;Takaki Tsubono;Frank O. Bryan;Richard D.Smith;Mathew E. Maltrud;Matthew W. Hecht;Julie L. McClean
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 2003년도 한국해안해양공학발표논문집
    • /
    • pp.164-169
    • /
    • 2003
  • The need fur higher grid resolution in climate models is often discussed (e.g. McAvaney et al.,2001) because a number of important oceanic processes are not resolved by the current generation of coupled models, e.g., boundary currents, mesoscale eddy fluxes, sill through flows. McClean et al., (1997) and Bryan and Smith (1998) have compared simulated mesoscale variability in simulations at several eddy-resolving resolutions to TOPEX/Poseidon and similar data. (omitted)

  • PDF

전자장해석을 이용한 풍력발전용 전력 케이블의 전자기적 고찰 (Finite Element Analysis of Power Cables for Wind Turbine Application)

  • 김지현;조성호;이인우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.257-260
    • /
    • 2006
  • This paper presents electromagnetic finite element analysis of power cables for wind turbine application. Eddy current losses are calculated due to high currents along metallic part, and dielectric strength on power cables is investigated for case study, which suggests the optimal cabling configuration for wind turbine construction.

  • PDF

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current

  • Pourreza, Tayyeb;Alijani, Ali;Maleki, Vahid A.;Kazemi, Admin
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.481-491
    • /
    • 2021
  • Graphene Nanosheets play an important role in nanosensors due to their proper surface to volume ratio. Therefore, the main purpose of this paper is to consider the nonlinear vibration behavior of graphene nanosheets (GSs) under the influence of electromagnetic fields and electrical current create forces. Considering more realistic assumptions, new equations have been proposed to study the nonlinear vibration behavior of the GSs carrying electrical current and placed in magnetic field. For this purpose, considering the influences of the magnetic tractions created by electrical and eddy currents, new relationships for electromagnetic interaction forces with these nanosheets have been proposed. Nonlinear coupled equations are discretized by Galerkin method, and then solved via Runge-Kutta method. The effect of different parameters such as size effect, electrical current magnitude and magnetic field intensity on the vibration characteristics of GSs is investigated. The results show that the magnetic field increases the linear natural frequency, and decreases the nonlinear natural frequency of the GSs. Excessive increase of the magnetic field causes instability in the GSs.

154 kV 지중송전선로의 고정용 금구류에서 발생하는 와전류 및 히스테리시스 손실 분포 해석 (Analysis of Eddy Current and Hysteresis Loss Distribution from Fixing Structure of 154 kV Underground Transmission Cable)

  • 송혜은;임상현;김경윤;박관수
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2018
  • 최근 도시미관과 편리성을 위해 지중송전선로의 사용이 확대되고 있다. 하지만 지중송전선로에서 발생하는 손실, 특히 24시간 상시 운영되는 3상 케이블을 지지하고 있는 금구류에서 발생하는 손실에 관한 연구는 부족하다. 케이블지지 금구류는 도전율과 투자율을 가지는 재질로 구성되어지기 때문에 케이블에 흐르는 전류에 의한 자기장 때문에 와전류 및 히스테리시스 손실이 발생하게 된다. 이 때 발생하는 손실은 전력 에너지 전달 효율에 악영향을 미치기 때문에 손실에 대한 연구가 필요하다. 따라서 본 논문에서는 3차원 유한요소해석을 통하여 케이블의 주변 금구류에서 발생하는 와전류 및 히스테리시스 손실에 대하여 분석하였다.

Study on Heat Generation of a Bulk HTS for Application to a 100 kWh SFES Superconductor Bearing

  • Jung, S.Y.;Lee, J.P.;Han, Y.H.;Han, S.C.;Jeong, N.H.;Ko, J.S.;Jeong, S.K.;Sung, T.H.
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.122-126
    • /
    • 2006
  • This paper presents experimental and numerical investigation on heat generation of a bulk HTS for application to a 100 kWh Superconductor Flywheel Energy Storage System(SFES) bearing. An experimental device is manufactured to reproduce varying magnetic field conditions that a bulk HTS may experience during the operation of the 100 kWh SFES. The bulk HTS is directly cooled by a cryocooler while the heat is generated by the eddy currents created by varying magnetic fields induced by a coil. In order to design the cryocooling system for the 100 kWh SFES project, a preliminary experiment to investigate the actual cooling load variation under AC magnetic field has been carried out. In the experiment, two different copper holders were designed and tested. Several temperature sensors were installed on each component of the assembly and the temperatures were measured for several operating conditions of the 100 kWh SFES. The experimental investigation on the thermal response of the bulk HTS and its holder is considered to be a valuable step fur the successful materialization of a large-scale SFES.

  • PDF

Computations of Losses and Temperatures in the Core Ends of a High Voltage Turbo-generator

  • Liu Yujing;Hjarne Stig
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.299-305
    • /
    • 2005
  • The work described in this paper is to investigate the additional iron losses and consequent temperatures in core ends of a turbo-generator wound with high voltage cables. Electromagnetic calculations are made with 3D FE models, which include the lamination material with anisotropic properties both in magnetic permeability and electric conductivity. The models also include the geometry of the stator teeth and eventually the axial steps designated to reduce the core end losses. The 3D model of the rotor consists of field windings with straight in-slot parts and end windings. The thermal models are simplified into two dimensions and include the heat sources dumped from the 3D electromagnetic solutions. The influences of power factor on additional iron losses are studied for this cable wound machine and conventional machines. The calculation results show that the additional iron losses can be reduced to about $15\%$ by introducing some small steps around the airgap corner of core ends.