• Title/Summary/Keyword: elctrospinning

Search Result 3, Processing Time 0.018 seconds

Electrospinning으로 제조된 PMMA/PVA Multilayer bone plate의 생체적합성에 관한 연구

  • Gwak, Gyeong-A;Thai, Van Viet;Lee, Byeong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.43.1-43.1
    • /
    • 2009
  • Bone plate는 골절된 뼈의 골 유합을 지지하기 위해서 정형외과, 신경외과, 성형외과 및 치과 등에서 널리 사용되고 있다. 하지만 기존의 bone plate는 대부분 금속으로 제작되어 있어 장기간 이식에 따른 부식 및 천연골 강도저하 등으로 인해 1~2년 후 재수술을 해야 하는 문제점을 갖고 있다. 본 연구에서는이런 금속 bone plate의 단점을 개선하고자 생체적합성이 우수한 생분해성 고분자 bone plate를 제작하였다. 사용된 고분자는 생체적합성과 생분해성이우수한 PVA(polyvinly alcohol)와 강도를 유지하기 위한 PMMA(poly methyl methacrylate)를 사용였다. Electrospinning 법으로 PVA와 PMMA fibrous mat를 제작하여 각 mat를 적층시킨 후 열압착을 하여 강도를 증가시킨 PMMA/PVA Mutlilayer bone plate을 제작하였다. 제작된 PMMA/PVA Mutlilayer bone plate의 생체적합성 평가를 위해 MTT assay, 생분해 특성을 관찰하기 위해 Micro-CT와 SBF(simulated body fluid) 내에서의 용해도를 관찰하였다. 또한조골세포의 부착과 분화에 미치는 영향을 SEM(scanning electron microscope)을통해 관찰하였고, 조골세포의 유전자 발현에 미치는 영향을 RT-PCR을통해 확인하였다.

  • PDF

The Effect of Chitosan on Elctrospinning of Silk Fibroin (실크 피브로인의 전기방사 거동에 미치는 키토산의 영향)

  • Yu, Su-Yeon;Jeong, Lim;Park, Won-Ho
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.267-268
    • /
    • 2003
  • 실크 피브로인은 천연 고분자 물질 중 하나로 Bombyx mori와 Antheraea perni 등이 있으며 생체적 합성을 가지고 있어 효소고정화를 위한 매트릭스나 세포배양용 지지체와 같은 의료용 분야에서 활발히 연구되고 있다. 또한 키토산은 키틴이 50% 이상 탈아세틸화된 것으로 갑각류, 곤충류, 균류 등에 존재하며 창상피복재, 인조 피부 등의 의료 분야에서 광범위하게 사용되고 있다. 본 실험에서는 실크 피브로인에 단독으로는 전기방사가 되지 않는 키토산을 다양한 비율로 블렌드하여 키토산이 실크 피브로인의 전기방사된 섬유의 형태에 미치는 영향에 대하여 알아보았다. (중략)

  • PDF

Preparation and Characterization of Polysaccharide-based Nanofiber Using Electrospinning Method (전기방사 방법을 이용한 천연 다당류 나노섬유 제조 및 특성 연구)

  • Kim, Se Jong;Lee, Su Jeong;Woo, Chang Hwa;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.318-327
    • /
    • 2016
  • In this study, alginate/poly(ethylene oxide) (PEO), and chitosan/PEO solution are prepared by dissolving alginate and chitosan into specific solvent for electrospinning. Solutions are poured into 10 mL plastic syringes with a metal nozzle supplied a high voltage power. The solution of alginate and chitosan is controlled by polymer concentration, temperature, relative humidity, applied voltage, distance from nozzle and flow rate of solution. Morphologies of fabricated nanofiber are observed by scanning electron microscopy (SEM). Optimal conditions for electrospinning of alginate nanofiber membrane are 2 wt% of alginate, 2 wt% of PEO at $60^{\circ}C$, 15 cm from the nozzle, $8{\mu}m/min$ flow rate and 20~24 kV. The conditions for elctrospinning of chitosan nanofiber membrane are 2 wt% of chitosan, 2 wt% PEO at $25^{\circ}C$, 15 cm from the nozzle, $8{\mu}m/min$ flow rate and 24 kV. The fabrication conditions of complex nanofiber prepared with chitosan and alginate are 20 cm from the nozzle, $8{\mu}m/min$ flow rate and 26 kV.