• Title/Summary/Keyword: elastoplastic element

Search Result 117, Processing Time 0.019 seconds

3-D elastoplastic finite element analysis of umbrella arch reinforcement system for tunnelling

  • Shin Hyu-Soung;Sicilia Carlos;Bae Gyu-Jin;Kim Chang-Yong;Hong Sung-Wan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.184-191
    • /
    • 2003
  • In this paper, a mathematical framework based on a homogenisation technique to simulate 'umbrella arch reinforcement system' (UARS) and its implementation into a 3D Finite Element program that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenisation approach implies that the generation of the Finite Element mesh can be easily produced and that re-meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed. The model developed is used to simulate tunnelling with the UARS. From the analyses, the effects of the main design parameters on the elastic and the elastoplastic analyses are considered.

  • PDF

Thermal contact resistance on elastoplastic nanosized contact spots (탄소성접촉면의 나노스케일 열접촉저항)

  • Lee, Sang-Young;Cho, Hyun;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2214-2219
    • /
    • 2008
  • The thermal contact resistance(TCR) of nanosized contact spots has been investigated through a multiscale analysis which considers the resolution of surface topography. A numerical simulation is performed on the finite element model of rough surfaces. Especially, as the contact size decreases below the phonon mean free path, the size dependent thermal conductivity is considered to calculate the TCR. In our earlier model which follows an elastic material, the TCR increases without limits as the number of nanosized contact spots increases in the process of scale variation. However, the elastoplastic contact induces a finite limit of TCR as the scale varies. The results are explained through the plastic behavior of the two contacting models. Furthermore, the effect of air conduction in nanoscale is also investigated.

  • PDF

Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint ($Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가)

  • 박영철;오세욱;조용배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation (탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석)

  • Dongchan Seo;Kyung-Heui Kim;Dohoon Lee;Bora Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

Try out and Analytical Researches on Quenching Process of Coupled Torsion Beam Axle using Boron Steel Tube (보론강을 이용한 CTBA의 후열처리 공정 실험 및 해석)

  • Yoon, S.J.;Park, J.K.;Kim, Y.S.;Suh, C.H.;Lee, K.H.;Kim, R.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.181-184
    • /
    • 2009
  • The hot press farming process, which is the press hardening of steel parts using cold dies, can utilize both ease of shaping and high strength due to the hardening effect of rapid quenching during the pressing. In this study, a thermo-elastoplastic analysis of the hot press forming process using the finite element method was performed in order to investigate the deformation behavior and temperature history during the process and the mechanical properties of the pressed parts.

  • PDF

Residual Stress Analysis of Hot Rolled Strip (열연 강판의 잔류 응력 해석)

  • 구진모;김홍준;이재권;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.172-175
    • /
    • 2003
  • Run-Out-Table is the region between EDT and CT. Hot killed strip is cooled by air and water in ROT. In this procedure, phase transformation and shape deformation occur due to temperature drop. Because of un-ideal cooling condition, deformation of strip and non-uniform phase distribution come into existence. This phenomenon affects the strip property and lead th the existence of residual stress. And it exerts effects on the Coiling process, Coil Cooling process, and Un-coiling process. Through these process, the residual stresses of strip are more larger and unbalance of these stresses become more severe. Finite element (FE) based models for the analysises of non-steady state heat transfer and elastoplastic deformation are described in this investigation. The analysises of thermodynamics and phase transformation kinetics are suggested also. Using the ROT simulation result coiling process and coil cooling process simulations are carried out.

  • PDF

Finite Element Analysis and Its Verification of Springback in L-bending to Evaluate the Effect of Process Design Parameters (L-벤딩에서 공정 설계변수가 스프링백에 미치는 영향의 평가를 위한 유한요소해석 및 검증)

  • Cho, M.J.;Kim, S.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.275-283
    • /
    • 2021
  • A parametric study was conducted on the effects of five fundamental design parameters on springback, including die clearance, step height, step width, punch radius, and taper relief in an L-bending process, controlled by the compression force. The experiment was also conducted to verify the usefulness of the parametric study procedure for process design, as well as the finite element predictions. The elastoplastic finite element method was utilized. The L-bending process of the york product, which is a key part of the breaker mechanism, was employed. The deformation of the material was assumed to be due to plane strain. Five samples of each design parameter were selected based on experiences in terms of process design. The finite element predictions were analyzed in detail to show a shortcut towards the process design improvement which can replace the traditional process design procedure relying on trial-and-errors. The improved process design was verified to meet all the requirements and the predictions and experiments were in good agreement.

A Study on Anisotropic Reinforcing Mechanism of Umbrella Arch Reinforcement Method in Tunnelling (터널 보강용 강관 다단 그라우팅 공법의 이방성 보강 메카니즘 규명에 관한 연구)

  • 배규진;신휴성;최용기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.245-259
    • /
    • 2003
  • This paper deals with an Umbrealla Arch Reinforcement Method (UARM) in tunnelling. It is known that the mechanism of the reinforcement system is too complex to be simulated in existent finite element (FE) frameworks when considering its complex geometry of pipe arrangements and contribution of each component of the reinforcement to reinforcing effect. In this study a 3-D elastoplastic FE procedure is, therefore, proposed by introducing homogenisation technique, which is used to define mathematically elastic as well as elastoplastic characteristics of a reinforced ground material as a composite. A number of practical suggestions are addressed considering staged constructions of tunnels. For illustrative purposes, a series of parametric studies are undertaken and anisotropic characteristics of the reinforced ground as well as effects of the reinforcement on tunnel convergences are investigated. It is found that the reinforced ground material defined in homogenisation framework has its mechanical characteristics reasonably representing inherent geometrical and quantitative characteristics of each of constituents.

Residual stress in an elastoplastic annular disc interacting with an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Lai, Hsiang-Wei;Wang, Yun-Che;Aizikovich, Sergey M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2019
  • Elastoplastic analysis of an annular disc, being fully constrained on its outer rim and interacting with a purely elastic inclusion perfectly bonded with its inner rim, is conducted to study its plastic deformation and residual stress under thermal cycles. The system is termed the composite disc. Quasi-static plane-strain deformation is assumed, and the von Mises yield criterion with or without the Ludwik hardening rule is adopted in our finite element calculations. Effects of multiple material properties simultaneously being temperature dependent on the plastic behavior of the composite disc are considered. Residual stress is analyzed from a complete loading and unloading cycle. Results are discussed for various inclusion radii. It is found that when temperature dependent material properties are considered, the maximum residual stress may be greater than the maximum stress inside the disc at the temperature-loaded state due to lower temperature having larger yield stress. Temperature independent material properties overestimate stresses inside materials, as well as the elastic irreversible temperature and plastic collapse temperature.

Seismic Analysis of Underground RC Box considering Elastoplastic Interface Element (탄소성 경계면 요소를 고려한 지하 철근콘크리트 박스의 내진 해석)

  • 남상혁;송하원;변근주
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.109-116
    • /
    • 2002
  • Since experimental evaluation of underground RC structures considering interaction with surrounding soil medium is quite difficult to be simulated, the evaluation for the underground RC structures using an analytical method can be applied very usefully. For underground structures interacted with surrounding soils, it is important to consider path-dependent RC constitutive model, soil constitutive model, and interface model between structure and soil, simultaneously. In this paper, an elastoplastic interface model which consider thickness of interface is proposed and applied for the analysis considering the interaction. Failure mechanism of underground RC box of two story and two box subway station under seismic action is obtained and the effects of ductility of intermediate column to entire underground RC system are investigated through analysis.

  • PDF