• Title/Summary/Keyword: elasto-plastic behavior

Search Result 314, Processing Time 0.02 seconds

A Study on the Mechanical Characteristics of the Resistance Multi-spot Welded Joints (저항 다점용접부의 역학적 특성에 관한 연구)

  • 방한서;방희선
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.499-505
    • /
    • 2001
  • In order to classify the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not taxi-symmetric, unlike the cafe of single-spot welded joint, the solution domain for simulation should be three dimension. Therefore, in this paper, firstly, the three-dimensional thermal elasto-plastic program is developed by an iso-parametric finite element method. Secondly, from the results analyzed by developed program, this has clarified mechanical characteristics and their production mechanism on single and multi-spot waled joints. Moreover, it has been intended to make clear effects of pitch length on welding residual stresses, plastic strain of multi-spot welded joints.

  • PDF

Numerical Analysis of Responses of a Elasto-plastic Tube under Kerosene-air Mixture Detonation (케로신-공기 혼합물의 비정상연소 모델과 탄소성 관의 동적 거동 수치해석)

  • Lee, Younghun;Gwak, Min-cheol;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.169-172
    • /
    • 2015
  • This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with CJ condition and experimental cell size. And the thermal softening effect on elasto-plstic model of metal tube is indicated by different dynamic response of detonation loaded tube in various temperature and tube thickness.

  • PDF

Calculation of Tensile Load between Roll Stands in Continuous Rolling System considering the Elasto-Plastic Behavior (탄소성 변형을 고려한 연속압연시 롤스탠드간 장력해석)

  • Shin, Nam-Do;Son, Il-Heon;Kang, Gyeong-Pil;Lee, Kyung-Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.286-287
    • /
    • 2008
  • The determination of roll speeds in continuous rolling system is an important factor along with the design of roll profile and roll gap. The tensile force on the workpiece induces reduced cross section area and the compressive force induces wrinkles. To determine the optimal roll speeds of current rough rolling system for wire rod, FE analysis was performed. We could predict the workpiece shape and the stress level more precisely by considering the elasto-plastic behavior of workpiece. Also the efficient analysis methodology is presented to reduce the calculation time by combining the ALE and lagrangian method.

  • PDF

Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings (충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발)

  • K.S. Kim;J.B. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.61-71
    • /
    • 1998
  • This paper describes a dynamic fracture behaviors of structural elements under elastic or elasto-plastic stress waves in two dimensional space. The governing equation of this problem has the type of hyperbolic partial differential equation, which consists of the equation of motions and incremental elasto-plastic constitutive equations. To solve this problem we introduce Zwas' method which is based on the finite difference method. Additionally, in order to deal with the dynamic behavior of elasto-plastic problems, an elasto-plastic loading path in the stress space is proposed to model the plastic yield phenomenon. Based on the result of this computation, the dynamic stress intensity factor at the crack tip of an elastic material is calculated, and the time history of a plastic zone of a elasto-plastic material is to be shown.

  • PDF

Calculation of residual stresses by thermal elasto-plastic analysis (열탄소성 해석에 의한 잔류응력의 계산)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.35-43
    • /
    • 1988
  • Welding residual stresses were calculated by two dimensional thermal elasto-plastic analysis using element method. Complicated plastic behavior during heat transfer was simulated with time. Fist, temperature distributions. To consider time varying behavior of material properties and loading and unloading processes, iterative calculation based on initial stiffness method was carried out. The method proposed by Yamata was used in time increment control which determined the accuracy of claculation. comparison with other caculated and experimental results shows fairly good agreement.

  • PDF

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

The Elasto-Plastic Buckling Analysis of Ball-Jointed Single Layer Latticed Domes considering the Characteristics of a Connector (적합부 특성을 고려한 볼 접합 단층 래터스 돔의 탄소성 좌굴해석)

  • Han, Sang-Eul;Kwon, Hyun-Jae;Kim, Jong-Bum
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.91-99
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics of the connector having an influence on the elasto-plastic buckling load of ball-jointed single layer latticed domes. As an analytic model, domes are composed of tubular member elements, balls and connectors. The joint system of members in single layer latticed domes has influence on the buckling load. Therefore, in this paper, the variation of the elasto-plastic buckling load by effects of the connectors characteristics is analyzed. The structural behavior of the connector is investigated by following points: (1) the length of rigid zone, (2) looseness of screw and (3) the diameter of connector. In addition, the elasto-plastic buckling analysis is carried out through the variation of the connectors section of yielding part, and then the buckling mode of the dome is examined. As a result, it is emphasized that the characteristics of the connector have significant effects on the buckling load of latticed domes.

  • PDF

Elasto-plastic Post-buckling Analysis of Spatial Framed Structures using Improved Plastic Hinge Theory (개선된 소성힌지이론을 이용한 공간 뼈대구조물의 탄-소성 후좌굴 해석)

  • Kim, Sung Bo;Ji, Tae Sug;Jung, Kyoung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.687-696
    • /
    • 2006
  • An efficient numerical method is developed to estimate the elasto-plastic post-buckling strength of space-framed structures. The inelastic ultimate strength of beam-columns and frames is evaluated by the parametric study. Applying the improved plastic hinge analysis that evaluate the gradual stiffness decrease effects due to spread of plasticity, elasto-plastic post-buckling behavior of steel frames is investigated considering the various residual stress distributions. Introducing the plastification parameter that represent pread of plasticity in the element and performing parametric study of equivalent element force and member idealization, finite-element solutions for the elasto-plastic analysis of space frames are compared with the results by plastic region analysis, shell elements and experimental results.

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF