• 제목/요약/키워드: elasticity modulus

검색결과 879건 처리시간 0.025초

Effects of Length and Grade on In-grade Tensile Strength and Stiffness Properties of Radiata Pine Timber

  • Tsehaye, Addis;Buchanan, A.H.;Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권2호
    • /
    • pp.16-23
    • /
    • 1998
  • This paper examines the effects of specimen length and grade on the strength and stiffness properties of structural timber of radiata pine. The tensile strength and modulus of elasticity of 1,902 machine-graded boards with 3.15- and 1.62-m clear span lengths, were determined using a horizontal tension test machine. The mean failure and characteristic stress values for tensile strength show an extremely high dependency on test specimen length. The mean and characteristic values of both modulus of elasticity and tensile strength show significant dependency on machine stress grades.

  • PDF

폴라프로필렌 섬유보강 흙콘크리트 포장재료의 투수 특성 (Permeability of Polypropylene Fiber Reinforced Soil Concrete Pavement Material)

  • 성찬용
    • 한국농공학회논문집
    • /
    • 제46권6호
    • /
    • pp.13-19
    • /
    • 2004
  • This study was performed to evaluate permeable properties of eco-concrete using soil, natural coarse aggregate, soil compound and polypropylene fiber. The fIexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were increased with increasing the content of coarse aggregate, soil compound and polypropylene fiber. The flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity were 259 MPa, 3,527 m/s and 275 ${\times}$ 102 MPa at the curing age of 28 days, respectively. The coefficient of permeability was decreased with increasing the content of coarse aggregate and soil compound, but it was increased with increasing the content of polypropylene fiber. Accordingly, this concrete can be used for farm road.

균열이 발생된 콘크리트의 특성 및 보수.보강(구조 및 재료 \circled2) (Properties and Repair-Reinforcement of Concrete Introduced Crack)

  • 김영익;윤준노;민정기;김경태;박필우;성찬용
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.284-289
    • /
    • 2000
  • This study is performed to evaluate an the crack properties and repair-reinforcement of concrete introduced crack. Materials used are portland cement, coarse aggregate, fine aggregate, unsaturated polyester resin and fly ash. Specimen is used beam of 76${\times}$76${\times}$412mm for measurement of pulse velocity, dynamic modulus of elasticity and bending strength and is introduced crack artificially. The following conclusions are drawn; Pulse velocity, dynamic modulus of elasticity and bending strength of concrete introduced crack is shown the lower 1.24∼11.91%, 3.42∼17.21% and 38.17∼61.0% than that of the control concrete, respectively. Pulse velocity, dynamic modulus of elasticity and bending strength of concrete repaired and reinforced crack is shown the higher 0.5∼2.60%, 1.57∼3.07% and 28.17∼47.25% than that of the concrete introduced crack and the lower than that of the control concrete, respectively.

  • PDF

Equivalent stiffness method for nonlinear analysis of stay cables

  • Xia, G.Y.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.661-667
    • /
    • 2011
  • In the famous equivalent elasticity modulus method proposed by Ernst for the geometrical nonlinear analysis of stay cables, the cable shape was assumed as a parabolic curve, and only a part of the gravity load normal to the chord was taken into account with the other part of gravity load parallel to the chord being ignored. Using the actual catenary curve and considering the entire gravity load of stay cables, the present study has derived the equivalent stiffness method to analyze the sag effect of stay cables in cable-stayed bridges. The derived equivalent stiffness can be degenerated into Ernst's equivalent elasticity modulus method with some approximations. Therefore, the Ernst's method is a special and approximate formulation of the present method. The derived equivalent stiffness provides a theoretical explanation for the famous Ernst's formula.

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

재생굵은골재를 사용한 초유동 콘크리트의 강도 및 비파괴 특성 (Strengths and Non-destruction Properties of Super Flow Concrete Using Recycled Coarse Aggregate)

  • 성찬용
    • 한국농공학회논문집
    • /
    • 제47권1호
    • /
    • pp.25-32
    • /
    • 2005
  • This study was performed to evaluate strengths and non-destruction properties of super flow concrete using recycled coarse aggregate. At the curing age of 28 days, the compressive strength was 22.7-37.5 MPa, the splitting tensile strength was $2.65\~3.73$ MPa, the flexural strength was $5.78\~6.86$ MPa, the ultrasonic pulse velocity was $3,103\~3,480$ mis, the dynamic modulus of elasticity was $3.401{\times}104\~4.521{\times}104$MPa, respectively. The strengths, ultrasonic pulse velocity and dynamic modulus of elasticity of super flow concrete were decreased with increasing the content of recycled coarse aggregate. The super flow concretes using recycled coarse aggregate were improved by substitution in the range of less than the fly ash content 30010 and recycled coarse aggregate content $75\%$.

Properties of concrete incorporating granulated blast furnace slag as fine aggregate

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.437-450
    • /
    • 2017
  • The present work investigates about the development of a novel construction material by utilizing Granulated Blast Furnace Slag (GBS), an industrial waste product, as substitution of natural fine aggregates. For this, experimental work has been carried out to determine the influence of GBS on the properties of concrete such as compressive strength (CS), modulus of elasticity, ultrasonic pulse velocity (UPV), chloride penetration, water absorption (WA) volume of voids (VV) and density. Concrete mixes of water/cement (w/c) ratios 0.45 and 0.5, and incorporating 20%, 40% and 60% of GBS as partial replacement of natural fine aggregate (sand) are designed for this study. The results of the experimental investigation depict that CS of concrete mixes increases with the increasing percentages of GBS. Moreover, the decrease in chloride penetration, WA and VV, and improvement in the modulus of elasticity, UPV, density of concrete is reported with the increasing percentage of GBS in concrete.

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

다량 첨가된 플라이애시 콘크리트의 기초 역학적 성능 평가 (An Evaluation of Basic Mechanical Performance for High Volume Fly Ash Concrete)

  • 유성원;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제2권3호
    • /
    • pp.202-208
    • /
    • 2014
  • 플라이애시가 다량 첨가된 콘크리트, HVFA의 구조 기초 거동을 평가하기 위하여 플라이애시 혼입률과 압축강도를 변수로 하여 탄성계수, 응력-변형률 관계 및 부착강도 실험을 수행하였다. 실험결과에 의하면, 탄성계수는 콘크리트의 압축강도와 플라이애시 혼입률에 어느 정도 영향을 받는 것으로 나타났으며, 극한변형률 역시 기존의 설계식과 다소 차이가 있는 것으로 나타났다. 반면에 HVFAC의 탄성계수 및 부착강도는 일반 콘크리트와의 차이가 크지 않은 것으로 나타났다.

Investigation of masonry elasticity and shear moduli using finite element micro-models

  • Mavrouli, O.A.;Syrmakezis, C.A.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.171-182
    • /
    • 2008
  • In this paper, a methodology for the estimation of masonry elasticity and shear moduli is presented, for linear elasticity considerations. The methodology is based on the assumption that for a "periodic" masonry wall, which is formed by the repetition of a basic unit containing blocks and mortar, the mechanical characteristics of the unit are representative of the characteristics of the entire wall. For their calculation, the finite element analysis method is used. A micro-model with finite elements simulating separately the blocks and the mortar is developed. An equivalent finite element model, using an homogenous material is also developed and assuming equivalence of strains for the two models, the homogenous material properties are estimated. The efficiency of the method and its applicability limits are investigated.