• Title/Summary/Keyword: elastic-plasticity

Search Result 389, Processing Time 0.027 seconds

FE Techniques for the Accurate Prediction of Part Dimension in Cold Forging (냉간 단조품의 치수 정밀 예측을 위한 유한 요소 해석 기술)

  • 이영선;권용남;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.3-8
    • /
    • 2004
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered practically, FE results could predict the part dimension within the range of $10\mu\textrm{m}$. And if thermal effects also are considered additionally, the predicted dimensions are well coincided with the experimental down to about $5\mu\textrm{m}$.

The Effect of Squeezing Parameters on the Fabrication Behavior of Phosphor Films (스퀴징 공정변수에 따른 형광체막 성형 거동에 관한 연구)

  • Park, J.Y.;Lee, J.W.;Yoon, G.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • It was confirmed that when phosphor slurry is formed in the cavity of an elastic mold, the pressure distribution of the phosphor slurry varies as a function of the major squeegee parameters (squeegee angle, squeegee velocity, and the viscosity of the phosphor slurry). The higher the slurry viscosity, the faster the squeegee velocity, and the smaller the squeegee angle, the higher the filling completeness of the phosphor slurry. The optimum conditions for complete filling of the phosphor slurry were found when the squeegee angle was between 30 to 45 degrees, squeegee velocity at 40 to 70mm/sec, and the viscosity of the phosphor slurry composite was at 6,556 cps (i.e. phosphor content around 50 wt. %).

Inelastic behavior of standard and retrofitted rectangular hollow sectioned struts -I: Analytical model

  • Boutros, Medhat K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.491-504
    • /
    • 2000
  • This paper is a presentation of a physical model for the elastic-partly plastic behavior of rectangular hollow section pinned struts subjected to static cyclic axial loading and the evaluation of the compressive strength of retrofitted damaged struts. Retrofitting is achieved by welding stiffening plates along the webs of damaged struts. The shape of the elastic and permanent deformations of the strut axis satisfy the conditions at the ends and midspan. Continuous functions of the geometric variables of stress distributions in the yielded zone are evaluated by interpolation between three points along each partly plastic zone. Permanent deformations of the partly plastic region are computed and used to update the shape of the unloaded strut. The necessity of considering geometric nonlinearity is discussed. The sensitivity of the results to the location of interpolation points, the shape of the permanent deformation and material hysteretic properties is investigated.

Evaluation of Seismic Buckling Load for Seismically Isolated KALIMER Reactor Vessel (면진설계된 KALIMER 원자로용기의 지진좌굴 특성평가)

  • 구경회
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.220-227
    • /
    • 1999
  • The Purpose of this paper is to evaluate the buckling strength of conceptually designed KALIMER reactor vessel. For evaluation of the buckling load buckling load the design equations and the finite element analysis are used. In finite element method the eigenvalue buckling analysis nonlinear elastic buckling analysis using snap-through buckling method and nonlinear elastic-plastic buckling analysis are carried out. the calculated buckling loads of KALIMER reactor vessel using the finite element method are in well agreement with those of the design equations. From the calculated results of buckling load in KALIMER rector vessel it is shown that the plasticity of vessel materials significantly affects the buckling load but the initial imperfection has little effects, In checking the limits of bucking load of KALIMER reactor vessel using the ASME B & PV Section III. Subsection NH the non-seismic isolation design can not satisfy the buckling limit requirements but the seismic isolation design can sufficiently satisfy the requirements.

  • PDF

Determination of the Mechanical Properties of the Coated Layer in the Sheet Metal Using Load-Displacement Curve by Nanoindentation Technique (나노 인덴테이션의 하중-변위 곡선을 이용한 용융아연도금 강판 코팅층의 기계적 특성 결정)

  • Ko Y. H;Lee J. M;Kim B. M
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.731-737
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading-unloading curve was used to determine the Young's modulus, hardness. A new method is recently being developed for elastic-plastic properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength is found to have significant effect on measured data. The load-displacement curves of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films, and then these are computed using the analysis procedure. The developed neural networks apply also to obtain reliable mechanical properties.

Finite Element Analysis of Nanoindentation Process and its Experimental Verification (나노 인덴테이션 공정의 유한요소해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.382-387
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behaviors of the materials during indentation were studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-10nm. Comparisons between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test.

An Improved Constitutive Model of Shape Memory Alloy (형상기억합금의 개선된 구성적 모델)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.350-356
    • /
    • 2011
  • Shape memory alloys(SMAs) exhibit pseudoelastic behavior, characterized by the recovery of an original shape even after severe deformation, during loading and unloading within appropriate temperature regimes. The distinctive mechanical behavior is associated with stress-induced transformation of austenite to martensite during loading and reverse transformation to austenite upon unloading. To develop a material model for SMAs, it is imperative to consider the difference in moduli of active phases. For example, the Young’s modulus of the martensite is one-third to one half of that of the austenite. The model proposed herein is a modification of the one proposed recently by Ho[17]. The prediction of the behavior of SMAs during unloading before the onset of reverse transformation was improved by introducing a new internal state variable incorporating the variation of the elastic modulus.

Simulation of Growth Behavior of Sawtoothed Interface by the compression (톱니형상면의 압축에 의한 성장거동 시뮬레이션)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.90-94
    • /
    • 2002
  • In this paper, Compression in the case where dissimilar blocks are twinned variously are carried out in the condition of lubricated interface. The degree of growth is experimentally investigated. Moreover, numerical simulations are carried out by the elastic-plastic FEM for the case of the dissimilar blocks with the initial sawtooth angle of 60。. The dissimilar blocks are twinned, larger difference between material properties leads smaller growth, and the degreased interface leads smaller growth than that in the lubricated one. Furthermore, by the simulation of compression where dissimilar blocks are twinned, it is confirmed that the tendency of the general deformation pattern is very similar to the experiment.

  • PDF

A Study on the Process Sequence Design of a Tub for the Washing Machine Container (세탁조의 제작공정해석 및 공정개선에 관한 연구)

  • 임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.359-374
    • /
    • 1994
  • Process sequence design in sheet metal forming process by the finite element method is investigated. The forming of sheet metal into a washing machine container is used to demonstrate the design of an improved process sequence which has fewer operations. The design procedure makes extensive use of the finite element method which has simulation capabilities of elastic-plastic modeling. A one-stage process to make an initial blank to the final product is simulated to obtain information on metal flow requirements. Loading simulation for a conventional method is also performed to evaluate the design criteria which are uniform thickness distribution around the finished part and maximum punch load within limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. This specific case conventional process sequence has three forming operations. This specific case can be considered for application of the method and for development of the sequence design methodology in general.

  • PDF

A Study on the Automatic Elimination of Free Edge for Sheet Metal Forming Analysis (박판성형해석을 위한 자동 프리에지 제거에 관한 연구)

  • 유동진
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.614-622
    • /
    • 2004
  • A new approach for the automatic elimination of free edges in the finite element model for the analysis of sheet metal forming processes is presented. In general, the raw finite element model constructed from an automatic mesh generator is not well suited for the direct use in the downstream forming analysis due to the many free edges which requires tedious time consuming interactive graphic operations of the users. In the present study, a general method for the automatic elimination of free edges is proposed by introducing a CAD/CAE hybrid method. In the method a trimmed parametric surface is generated to fill the holes which are orginated from the free edges by using the one step elastic finite element analysis. In addition, mesh generation algorithm is suggested which can be used in the general trimmed surface. In order to verify the validity of the proposed method, various examples including actual automobile sheet metal parts are given and discussed.