• Title/Summary/Keyword: elastic-plastic fracture

Search Result 274, Processing Time 0.023 seconds

Development of Fiber-Optic AE Sensor for On-Line Monitoring System (광섬유를 이용한 상시감시 시스템용 음향방출센서의 개발)

  • Nam, Jae-Yeong;Jeong, Jae-Hyeon;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2891-2898
    • /
    • 2000
  • The objective of this paper is to develop a fiber-optic acoustic emission(AE) sensor applicable to on-line monitoring systems which is suitable for long-distance signal transmission. An AE sensor was developed by use of a fiber-optic cantilever and an extrinsic Fabry-Perot interferometer(EEPI). The efficiency of signal processing was improved by driving the high frequency AE signals into the low frequency ones. In order to verify the developed sensor, the tensile and the pencil lead fracture(PLF) tests were performed including the experiment showing the Kaiser effect. Form tests, AE signals were successfully detected in the elastic-plastic deformation range, especially higher signals at the crack propagation. The developed sensor was expected to be used for an on-line monitoring of crack propagation in mechanical system.

Failure Behavior of T-joint Pipe with Outer Local Wall Thinning under Internal Pressure (내압을 받는 외부 국부 감육 T-joint 배관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.80-87
    • /
    • 2014
  • The pipelines are apt to erosion or corrosion because of the high-speed flow of water and steam with high temperatures or high pressures. This study was carried out a finite element analysis (FEA) and an experimental for the fracture behavior of T-joint pipes with local wall thinning under internal pressure. Local wall thinning was machined on the pipes in order to simulate erosion and corrosion of the metal. The configurations of the eroded area included an eroded ratio of d/t=0.80~0.963 and an eroded length of l=25 mm, 50 mm, and 102 mm. Three-dimensional elastic-plastic analyses were also carried out using FEA, which accurately simulates failure behaviors. In regards to the relationship between pressure and eroded, the criterion that indicates what can be used safely under operating pressure and design pressure were obtained from FEA. The FEA results were in relatively good agreement with that of the experiment.

Theoretical explanation of rock splitting based on the micromechanical method

  • Huang, Houxu;Li, Jie;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.225-231
    • /
    • 2018
  • In this paper, in order to explain the splitting of cylindrical rock specimen under uniaxial loading, cracks in cylindrical rock specimen are divided into two kinds, the longitudinal crack and the slanting crack. Mechanical behavior of the rock is described by elastic-brittle-plastic model and splitting is assumed to suddenly occur when the uniaxial compressive strength is reached. Expression of the stresses induced by the longitudinal crack in direction perpendicular to the major axis of the crack is deduced by using the Maxwell model. Results show that the induced stress is tensile and can be greater than the tensile strength even before the uniaxial compressive strength is reached. By using the Inglis's formula and simplifying the cracks as slender ellipse, the above conclusions that drawn by using the Maxwell model are confirmed. Compared to shearing fracture, energy consumption of splitting seems to be less, and splitting is most likely to occur when the uniaxial loading is great and quick. Besides, explaining the rock core disking occurred under the fast axial unloading by using the Maxwell model may be helpful for understanding that rock core disking is fundamentally a tensile failure phenomenon.

Assessment of Material Properties Using Finite Element Analysis for Small Punch Creep Testing (SP 크리프 시험의 유한요소해석을 이용한 재료물성 평가)

  • Park, Tae-Kyu;Ma, Young-Wha;Yoon, Kee-Bong;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.511-516
    • /
    • 2001
  • Recently small punch creep testing (or miniature disc bend creep test) has received much attention through European collaborative research projects. This method was considered as a substitute for the conventional creep rupture testing by which the residual creep life is measured from the specimen taken out from serviced components of high temperature plants. It would be beneficial if the material creep properties such as power law creep constants as well as the creep rupture life can be measured from the small punch creep test. In this paper a method of assessing creep constants from the small punch creep testing is proposed. Finite element analyses were performed to investigate evolution of stress and strain rate at the weakest locations of the small punch creep specimen. Elastic-plastic-secondary creep analyses were carried out. The estimation equations for creep constants by the small punch creep testing are proposed based on the finite analysis results. Small punch creep tests were also performed with 9Cr steel and the accuracy of the proposed equation was verified by the experimental results.

  • PDF

Nonlinear Analysis of Reinfored Concrete Beams by Displacement Control Method (변위제어법에 의한 철근콘크리트 보의 비선형해석법)

  • 김진근;이을범;이태규
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • In this paper a computer program for displacement control method was developed, in which a certain displacement of the structure is increased and the applied loads and another displacements are obtained. To simplify the nonlinear structural analysis, the relationships of moment-curvature were linearized as elasto-softening model for over-reinforced concrete beam and as elasto-plastic-softening model for under-reinforced concrete beam. Since the result of the analysis of reinforced concrete beam depended on the element size beyond elastic zone, the relationship of moment-curvature was modified for each element by using the concept of fracture energy approach. Overall, analytical results accurately predicted the load-displacement behavior of reinforced concrete beams.

  • PDF

Assessment of Creep Properties of 9Cr Steel Using Small Punch Creep Testing (소형펀치 크리프 시험을 이용한 9Cr강의 크리프 상수 평가)

  • Yun, Gi-Bong;Park, Tae-Gyu;Sim, Sang-Hun;Jeong, Il-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1493-1500
    • /
    • 2001
  • Recently small punch creep testing (or miniature disc bend creep test) has received much attention through European collaborative research projects. This method was considered as a substitute for the conventional creep rupture testing by which the residual creep life is measured from the specimen taken out from serviced components of high temperature plants. It would be beneficial if the material creep properties such as power law creep constants as well as the creep rupture life can be measured from the small punch creep test. In this paper a method of assessing creep constants from the small punch creep testing is proposed. Finite element analyses were performed to investigate evolution of stress and strain rate at the weakest locations of the small punch creep specimen. Elastic-plastic-secondary creep analyses were carried out. The estimation equations for creep constants by the small punch creep testing are proposed based on the finite analysis results. Small punch creep tests were also performed with 9Cr steel and the accuracy of the proposed equation was verified by the experimental results.

Technology of High Purity Powder Sintering by Ti Scrap Recycling (티타늄 스크랩 재활용에 의한 고순도 분말 소결 기술)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.397-402
    • /
    • 2009
  • In this study, Ti powder was fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH) method. Hydrogenation reactions of Ti scrap occurred at near 450 $^{\circ}C$ with a sudden increase in the reaction temperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. The dehydrogenation process was also carried out at 750 $^{\circ}C$ for 2hrs in a vacuum of $10^{-4}$ torr. After the HDH process, a deoxidation treatment was carried out with the Ca(purity: 99.5) at 700 $^{\circ}C$ for 2hrs in the vacuum system. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeably lower values, compared to the content obtained by HDH process. In order to fabricate Ti compacts, Ti powder was sintered at $1100\sim1400^{\circ}C$ for 2hrs under a vacuum of $10^{-4}$ torr. The relative density of compact was 94.9% at 1300 $^{\circ}C$. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elastic range with short plastic yielding up to a peak stress.

Finite Element Analysis of Stent Expansion Considering Stent-Balloon Interaction (스텐트와 풍선의 상호작용을 고려한 스텐트 팽창의 유한요소해석)

  • Oh Byung-Ki;Cho Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.156-162
    • /
    • 2005
  • Stouts are frequently used throughout the human body, but the most critical areas are in coronary arteries. They open pathways in vessels and supply blood directly to the heart muscle. To simulate behavior of expansion for the coronary stent by balloon, the commercial finite element code LS-DYNA and ANSYS were used in the analysis. The explicit method is used to analyze the expansion of the stent and the implicit method is performed to simulate the springback that developed in a stent after the balloon pressure has been removed. Finally the experimental results for the expansion of the PS153 stents were compared with the FEM results. The springback was measured with the stents subjected to no external pressure to which stents are subjected in vivo. The simulated results were in good agreement with experimental results. Standard mechanical characteristics such as stress, plastic strains, and springback can be derived from the numerical results. These data can be used to determine maximum expansion diameter without fracture and expansion pressure considering elastic recoil.

Mechanical Properties of Barley Starch Gels (보리전분젤의 역학적 성질)

  • Lee, Shin-Young;Kim, Kwang-Joong;Lee, Sang-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.215-220
    • /
    • 1986
  • Mechanical properties of 9-30% starch gels from naked and covered barley were investigated with rheometer or rotation viscosimeter. The compression-penetration curves of 20 and 30% gels were characterized by deformations containing elastic, plastic and fracture regions under the load of 0-2kg. The compressive stress relaxation test showed that the viscoelastic properties of 20% gels may be represented by four element Maxwell model consisting of two Maxwell element in parallel. Also, stress-decay under the steady shear of 9% covered starch gel was able to be interpreted by linear viscoelastic model and stress-decay process was suggested to be effective to investigate the effect of temperature or additives on gel structure.

  • PDF

Low-cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior

  • Lee, Jin-Ho;Dong, Pingsha;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.868-880
    • /
    • 2020
  • One of the main concerns in the structural integrity of offshore pipelines is mechanical damage from external loads. Pipelines are exposed to fatigue failure in welded joints due to geometric discontinuity. In addition, fatigue loads such as currents, waves, and platform motions may cause significant plastic deformation and fracture or leakage within a relatively low-cycle regime. The 2007 ASME Div. 2 Code adopts the master S―N curve for the fatigue evaluation of welded joints based on the mesh-insensitive structural stress. An extension to the master S―N curve was introduced to evaluate the low-cycle fatigue strength. This structural strain method uses the tensile properties of the material. However, the monotonic tensile properties have limitations in describing the material behavior above the elastic range because most engineering materials exhibit hardening or softening behavior under cyclic loads. The goal of this study is to extend the cyclic stress-strain behavior to the structural strain method. To this end, structural strain-based procedure was established while considering the cyclic stress-strain behavior and compared to the structural strain method with monotonic tensile properties. Finally, the improved prediction method was validated using fatigue test data from full-scale girth-welded pipes.