• Title/Summary/Keyword: elastic-plastic fracture

Search Result 274, Processing Time 0.024 seconds

A Study of Non-destructive Indentation and Small Punch Tests for Monitoring Materials Reliability (소재의 안전전단을 위한 비파괴 압입 및 소형펀치 시험법 연구)

  • Ok Myoung-Ryul;Ju Jang-Bog;Lee Jeong-Hwan;Ahn Jeong-Hoon;Nahm Seung Hoon;Lee Hae-Moo;Kwon Dongil
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.78-85
    • /
    • 1997
  • Indentation and small punch tests are very powerful methods to monitor the materials reliability since they are very simple, easy and almost non-destructive. First, recently-developed continuous indentation test can provide the more material properties such as hardness, elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve was derived from the indentation load-depth curve for spherical indentation. In detail, the strain was able to be obtained from plastic depth/contact radius ratio, and the flow stress was from mean contact pressure through the analysis of elastic-plastic indentation stress field. Secondly, the small punch test was studied to evaluate the fracture toughness and defomation properties such as elastic modulus and yield strength. Like the indentation test, this test can be applied without severe damage of the target structure.

  • PDF

A Study on the Prediction of Fatigue Life in Dissimilar Materials Die Considering the Heat Shrink Fit (열박음을 고려한 이종재 금형의 피로수명 예측에 관한 연구)

  • 여은구;김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.93-98
    • /
    • 1999
  • Generally, the - life of die is limited by fatigue fracture or dimensional inaccuracy originated from wear. In this paper, to predict the fatigue life of the dissimilar materials die, the stress and stxain histories of die can be predicted by the analysis of elasto-plastic finite element neth hod and the elastic analysis of die during the process analysis of workpiece. Using heat shrink fit analysis, initial stress of the k r t die is computed. Also, the stress-life curve of die material can be obtained through experiment. With the above two facts, we propose the analysis method of predicting fatigue life in die. In the proposed model, tlz analysis of elastic-plastic finite element method for material is carried out by using ABAQUS. Surface force resulted from the contacting border of the die and workpiece is tmnsformed into the nodal force of die to implement elastic analysis. Besides, the proposed analysis model of die is applied to the one material and the dissimilar materials extrusion die.

  • PDF

An Evaluation of Cast Stainless Steel (CF8M) Fracture Toughness Caused by Thermal Aging at 43$0^{\circ}C$

  • Kwon, Jae-Do;Ihn, Jae-Hyuj;Park, Joong-Cheul;Park, Sung-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.902-910
    • /
    • 2002
  • Cast stainless steel may experience embrittlement when it is exposed approximately to 300$\^{C}$ for a long period. In the present investigation, the three classes of the thermally-aged CF8M specimen were prepared using an artificially-accelerated aging method. After the specimens were held for 300, 1800 and 3600hrs. at 430$\^{C}$, respectively, the specimens were quenched in water which is at room temperature. Load versus load line displacement curves and J-R curves were obtained using the unloading compliance method. talc values were obtained using the ASTM E813-87 and ASTM E 813-81 methods. In addition to these methods, talc values were obtained using the SZW (stretch zone width) method described in JSME S 001-1981. The results of the unloading compliance method are J$\_$Q/=543.9kJ/㎡ for virgin materials. The values of J$\_$IC/ for the degraded materials at 300, 1800 and 3600hrs. are obtained 369.25kJ/㎡, 311.02kJ/㎡, 276.7kJ/㎡, respectively. The results obtained by the SZW method are compared with those obtained by the unloading compliance method. Both results are quite similar. Through the elastic-plastic fracture toughness test, it is found that the value of loc is decreased with an increase of the aging time.

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.

An Engineering Method for Non-Linear Fracture Mechanics Analysis of Circumferential Through-Wall Cracked Pipes Under Internal Pressure (내압이 작용하는 원주방향 관통균열 배관의 비선형 파괴역학 해석법)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1099-1106
    • /
    • 2002
  • This paper provides engineering J-integral and crack opening displacement (COD) estimation equations for circumferential through-wall cracked pipes under internal pressure and under combined internal pressure and bending. Based on selected 3-D finite element calculations for the circumferential through-wall cracked pipes under internal pressure using the idealized power law materials, the elastic and plastic influence functions for fully plastic J-integral and COD solutions are found as a function of the normalized crack length and the mean radius-to-thickness ratio. These developed GE/EPRI-type solutions are then re-formulated based on the enhanced reference stress method. Such re-formulation not only provides simpler equations for J-integral and COD estimations, but also can be easily extended to combined internal pressure and bending. The proposed equations are compared with elastic-plastic finite element results using actual stress-strain data, which shows overall excellent agreement.

Elasto-Plastic Dynamic Analysis of Solids by Using SPH without Tensile Instability (인장 불안정이 제거된 SPH을 이용한 고체의 동적 탄소성해석)

  • Lee, Kyoung Soo;Shin, Sang Shup;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper elasto-plastic dynamic behavior of solid is analyzed by using smoothed particle hydrodynamics (SPH) without tensile instability which caused by a clustering of SPH particles. In solid body computations, the instability may corrupt physical behavior by numerical fragmentation which, in some cases of elastic or brittle solids, is so severe that the dynamics of the system is completely wrong. The instability removed by using an artificial stress which introduces negligible errors in long-wavelength modes. Applications to several test problems show that the artificial stress works effectively. These problems include the collision of rubber cylinders, fracture and crack of plate.

Distortion and Dilatatioin in the Tensie Failure of Paper

  • Park, Jong-Moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.73-85
    • /
    • 1999
  • Yield and fracture are separated in the tensile failure of paper. Failure in the machine direction of photocopy paper is contrasted with failure in the cross-machine direction . The ratios of distortion (shape change) to dilatation (volume change) for individual elements at yield and fracture are described. The ratios of distortion to dilatation are measured and compared to predicted values of the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density factor, samples are prepared from machine direction to cross-machine direction in 15 degree intervals. the strain energy density of individual elements are obtained by the integration of stress from finite element analysis with elastic plus plastic strain energy density theory. Poison's ratio and the angle from the principal material direction have a great effect ion the ratio fo distortion to dilatation in paper. During the yield condition, distortion prevails over dilatation . At fracture, dilatation is at a maximum.

  • PDF

Acoustic Emmision Characteristics according to Failure Modes of Pipes with Local Wall Thinning (감육배관의 손상모드에 따른 음향방출 특성)

  • 안석환;남기우;김선진;김진환;김현수;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.66-72
    • /
    • 2002
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. However, effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. In this study, we investigated failure modes of locally wall thinned pipes and AE signals by bending test. From test results, we could be divided four types of failure modes of ovalization, crack initiation after ovalization, local buckling and crack initiation after local buckling. And fracture behaviors such as elastic region, yielding region, plastic deformation region and crack progress region could be evaluated by AE counts, accumulative counts and time-frequency analysis during bending test. The result of the frequency range is expected to be basic data that can inspect plants in real-time.

The Evaluation of Fracture Toughness of SMC Composite Material and Carbon/Epoxy Composite Material (SMC 복합재료와 Carbon/Epoxy 복합재료의 파괴인성평가)

  • 최영근;이유태;이태순
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.25-32
    • /
    • 1993
  • In composite materials, the fracture perpendicular to the fiber direction usually shows a non-linear behavior accompannying blunting and plastic deformation around the crack tip. In this study, the fracture thoughness in random short fiber SMC composite material and Carbon/Epoxy composite material is estimated by the A.M.(Area Method) and the G.L.M.(Generalized Locus Method) which can determine a stable total energy release rate(G$_T$) not only in highly elghly elastic material but also in highly non-linear materials.

  • PDF

Estimation of Fracture Resistance Curves of Nuclear Materials Using Small Punch Specimen (소형펀치 시편을 이용한 원자력 재료의 파괴저항곡선 예측)

  • Chang, Yoon-Suk;Kim, Jong-Min;Choi, Jae-Boong;Kim, Min-Chul;Lee, Bong-Sang;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.70-76
    • /
    • 2007
  • Elastic-plastic fracture mechanics is popularly used for integrity evaluation of major components, however, it is not easy to extract standard specimens from operating facility. This paper examines how ductile fracture toughness is characterized by a small punch testing technique in conjunction with finite element analyses incorporating a damage model. At first, micro-mechanical parameters constituting Rousselier model are calibrated for typical nuclear materials using both estimated and experimental load-displacement (P-$\delta$) curves of miniaturized specimens. Then, fracture resistance (J-R) curves of relatively larger standard CT specimens are predicted by finite element analyses employing the calibrated parameters and compared with corresponding experimental ones. It was proven that estimated results by the proposed method using small punch specimen is promising and might be used as a useful tool for ductile crack growth evaluation.